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Abstract

In this paper, a line integral representation is presented for a linearly polarized Kirchho�-

type aperture radiation from a parabolic reector antenna. The main application of this

result is concerned with the acceleration of the numerical integration for near �eld calcu-

lation of large reector antennas. The present formulation is well suited to be improved

by fringe di�raction contributions in the framework of edge-wave theories such as Physical

Theory of Di�raction (PTD) and Incremental Theory of Di�raction (ITD).

I. Introduction

Reector antenna analysis is typically performed by Physical Optics (PO); for sim-

ple shapes (i.e. parabolic reectors), the combination of Geometrical Optics (GO) and

Kirchho�-type aperture integration (K-AI) provides an alternative scheme to evaluate

near- to far-�eld contributions. In this framework a systematic procedure to reduce the

aperture integration to a line integration along the rim may drastically improve the calcu-

lation time, particularly in the near �eld region, where FFT algorithms cannot be applied.

In this paper a line-integral representation is presented for the �eld radiated by a parabolic

reector antenna, illuminated by a focal axial symmetric feed-pattern with Huygens' type

polarization. This formulation provides a quite simple and physically appealing procedure

to observe the �eld from near to intermediate region with a reduced numerical e�ort, with

a practical utility when this �eld is used to illuminate independent objects placed in the

vicinity (e.g. sub-reector, struts, etc.). Generally speaking, this eÆcient representation

assumes practical importance for problems of antenna analysis in presence of perturbing

objects as well as problems of synthesis with near-�eld constrains. Furthermore, the algo-

rithm is well suited to be improved by more sophisticated di�raction methods such as the

Physical Theory of Di�raction (PTD), and the Incremental Theory of Di�raction (ITD)

thus overcoming the near axis caustic problems of the Geometrical and Uniform Theory

of Di�raction (GTD, UTD). The procedure presented here, while specializing to the case

of reector antennas the work presented in [1], leads to an interesting generalization to

non-uniform aperture �elds. In a �rst instance we assume an arti�cious feed pattern which

imply a purely polarized plane wave on the aperture plane. For this case we rigorously

derive the exact near-�eld radiated by the aperture in terms of line integration along

the contour rim. The arti�cious assumption for the feed pattern is next removed and the

formulation is properly corrected to account for the amplitude variation. The examples

presented are concerned with a Gaussian perfectly polarized primary feed, which is a good

approximation of the pattern from a circular corrugated horn. These examples show that

even in the case of -30dB of edge tapering, the approximate line-integral formulation for

non-uniform aperture �eld exhibits a surprising agreement when compared with a classical,

time expensive, surface aperture near-�eld integration.



II. Geometry of the problem

Consider a parabolic reector with z-axis and diameter D, illuminated by a primary

axial symmetric-�eld with phase center at the focus f (Fig.1a). Introduce a local reference

system with ~z-axis pointing toward the vertex of the reector and the spherical coordinates

(r0; �0; �0) with unit vectors, we express the primary �eld as

Efeed = V0
e
�jkr0

4�r0
P(�0; �0)F (�0; �0); (1)

where the polarimetric vectoral factor P(�0; �0) = (1 + cos �0) (�̂0 sin�0 + �̂
0 cos�0) is the

same as that of a Huygens' source placed at the focus and radiating towards the reector;

F (�0; �0) is a positive normalized amplitude factor that approximates the feed radiation

pattern. Using the geometric relations r0 = f

h
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, the Geometrical Optics (GO) aperture �eld is
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Note that the aperture electric �eld is perfectly polarized along x̂ which is a direct conse-

quence of the Huygens' source type illumination.

(a) (b)

Fig. 1. (a)Paraboloid illuminated by a focal feed, projecting surface and relevant reference systems.
(b) Local reference systems associated to an elementary strip.

III. Line-Integral formulation for uniform aperture distribution

Let us �rst assume a feed pattern F (�0; �0) = 2=(1 + cos �0)2 which implies a rigorous

uniform aperture distribution Ea = E0x̂, where E0 = V0
e�j2kf

4�f
. The aperture �eld is there-

fore a purely polarized plane wave. Applying for this case the procedure suggested in [1],

we rigorously derive the �eld radiated by the aperture in terms of line integration along

the contour rim. To this end, let us consider the surface A + S where A is the aperture

passing through the focus of the paraboloid and S is the lateral surface of a tube with

circular cross-section and directrix parallel to the z-axis (Fig.1a). Denote by ` the contour

of A, n̂ the unit normal internal to S, and V and V
� the volumes inside and outside the

semi-in�nite tube, respectively (Fig.1a). The observation point P is described by rectan-

gular coordinates (x; y; z) as well as by spherical coordinates (r; �; �). We now apply the



equivalence principle to the surface A+S and to the plane wave �eld (Eae
�jkz

;Hae
�jkz),

which is the Maxwellian continuation of the aperture �eld. The above �eld may be re-

garded in V as the sum of the �eld radiated by the aperture and the �eld associated to an

equivalent electric and magnetic current distribution located on S. The same total current

contributions radiate a vanishing �eld in V
�. Therefore,

E
A +ES = Eae

�jkz in V ; E
A +ES = 0 in V

�
: (3)

Using the characteristic function U(P ) which is unity for P 2 V and zero for P 2 V
�, we

can rewrite (3) in a compact form as

E
A = �ES +Eae

�jkz
U(P ); H

A = �HS +Hae
�jkz

U(P ): (4)

Eq.(4) provides an alternative exact representation of the aperture �eld EA, with the

advantage that the �eld ES can be exactly represented as a line integral along the contour

`. The surface integration over the domain S can be divided into sequential line integrals

along the rim contour ` and along the elementary strips. The integral along each strip is

evaluated in exact analytical form by using the same procedure as that used in [2]; thus

obtaining an exact line integral expression for ES and HS :

E
S =

Z
`

[eJ(`) + eM (`)] d`; H
S =

Z
`

[hJ (`) + hM (`)] d`; (5)

where �
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hM (`)
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and (R̂0; �̂s; �̂s) are the unit vectors associated to local spherical coordinate system (R0; �s; �s)

associated to the end-point Q of each elementary strip (Fig.1b).

The structure of the incremental �elds (eJ ;hJ ) and (eM ;hM ) resembles that of an equiv-

alent pair of electric and magnetic dipoles (JS ;MS) directed along ẑ, whose amplitudes

are proportional to the exciting aperture �eld at the rim. The pattern of these equivalent

dipoles has a dominant asymptotic contribution given by cot �s
2
and exhibits a singularity

for �S = 0 (i.e., in the direction ẑ). This singular behavior of the integrand function results

in a discontinuous behavior of the integral (i.e. of (ES
;H

S)) that smoothly and precisely

compensates for the GO discontinuity when the observation point crosses the surfaces.

IV. Non-uniform aperture distribution

The exact procedure derived in section III is based on the construction of a rigorous

Maxwellian �eld, which is obtained from the aperture �eld by a somewhat arti�cious

assumption for the primary �eld. The above procedure, however, provides a useful guideline

for the description to a non uniform, aperture �eld which is slowly varying with respect to

the wavelength. To this end let us consider a "quasi-Maxwellian" �eld (eEae
�jkz

; eHae
�jkz),

which is constructed by forcing the curl Maxwell's equations to the tapered aperture GO

�eld in (2) without signi�cant restriction on F (�0; �0):

eEa = Ea � j
�

k
rt �Ha;

eHa = Ha + j
1

�k
rt �Ea; (8)



where rt =
@
@x

x̂+ @
@y

ŷ is the transverse gradient operator with respect to z.

Applying the process described in section III to the quasi-Maxwellian �eld in (8) leads

to the following asymptotic approximation:

�
E
A

H
A

�
' �

Z
`

�
eJ + eM
hJ + hM

�
d`+

( eEaeHa

)
e
�jkz

U(P ): (9)

In (9), (eJ ;hJ ) and (eM ;hM ) are obtained from (6)-(7), by replacing therein the aper-

ture �eld with the modi�ed expression of the aperture �eld in (8). The terms E0

a and

H
0

a provides a signi�cant correction to the tapered aperture GO �eld, principally for the

z-components.

Numerical results are presented hereafter for a normalized amplitude Gaussian primary

�eld radiation with F (�0) = e
��02c. Note that this �eld becomes a good approximation of

that of a circular corrugated cross-polar compensated feed-horn. (The constant c can be

conveniently written in terms of the edge illumination �eld's level CdB (in dB) with respect

to the maximum value trough c = CdB
20�2

0
log e

). The line-integral formulation is applied to

a paraboloid reector with D = 20� and f = 10�. Reference result are obtained by

conventional aperture integration of the electric and magnetic aperture currents. The

presented curves show the x- and z-component of the aperture near �eld for di�erent

values of CdB . For the very near zone, the result from our method agree very well with the

reference solution obtained by conventional surface integration. It is worth pointing out

that the tapered shape of the aperture �eld is increased by the Gaussian feed distribution

and that gives rise to a z-component of the aperture �eld that does not appear in the case

of a uniform aperture distribution.

(a) (b)

Fig. 2. Near-�eld pattern at � = 0 and z = 1�; (a) x-component of electric �eld for di�erent
Gaussian illuminations CdB = �10dB;�20dB;�30dB, (b) z-component of electric �eld for
CdB = �20dB. Surface-integral (solid line); line-integral (dashed line).
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