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Abstract

The clinical necrosis of living tissues by means of high-temperature implants to be
heated through electromagnetic induction is theoretically studied. Non-linear and non-
stationary phenomena relevant to the action of the temperature-regulation system and
to the cellular death process, as like & the alteration of the local electromagnetic
properties due to the high temperature elevation are taken into account, by means of an
interlaced solution procedure for the electromagnetic problem and for the thermal one.
The model is validated through comparison with experimental clinical data.

I-INTRODUCTION

Hight Temperature Hyperthermia (HTH) has its roots in the ancient medicd practice of
cauterization; neverthdess, from a scientific and rationd view-point it represents a
recent technique, that is nowadays widdy used in cerebrd surgery, in oncologic therapy
(for deep-seated neoplagtic nucle), in orthopaedics. The most efficient way to redize
HTH is the introduction into the target tissue of thermad metdlic probes to be heated by
means of dectromagnetic (EM) induction; in fact, Snce no “mechanicad” connection
with the externa sources is necessary, the sessons can be repeated without multiple
insertion-remova  operation and 0 minimizing infection risks. Moreover, the EM
induction permits to obtain a more efficient temperature control of the probes avoiding
the generation of spurious cysts[1].

It is important to accurately determine the amplitude of the necrosis core in the target
region around the implants and its growing trend a each time of the thergpeutic sesson,
in order to optimise the duration of the trestment with respect to the temperature or the
power level of the implants. From a theoretica point of view, it is necessary to study the
therma propagation problem ingde the living tissue, on the ground of a Thermd
Trander Equation (TTE) whose conductivity coefficient and convective exchange
parameter have the following properties first, as a consequence of the loca thermo-
control processes, they must be (non-linearly) dependent on the temperature [2]; second,
they must be dependent also on the physiologic status of the tissue, which is represented
by a point-wise “necrosis level” fiddd and by the corresponding space-time evolution
equation (that shdl correctly represent the irrevershility of the therma death
phenomenon) to be solved in conjunction with the TTE. Moreover, during the trestment
gmulation, for a correct evaudion of the EM excitaion of the implants it is necessary
to continuoudy adjust the EM parameters (eg. the complex éectric permittivity) in the
tissue region close to the implants according to the variation of the locd temperature
and of the physologicd datus (eg. the occurrence of the necross phenomenon aters
the water and saline contents of the tissue).

[I-FORMULATION

In order to furnish a quantitative description of the necross phenomenon in a portion of
living tissue subjected to HTH we introduce the space-time dependent fiedd n
representing the necross level in the range between O (non-necrotic wedthy status) and



1 (fully-necrotized datus), whose evolution is described by means of the following
equation (Bio-Necrotic Equation, BNE):
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equipped with  the initid condition n(7,0)=0 rdevant to time t=0; h*1 Cis a

compact function approximating the Heavisde unit-step function. As one can see from
Eg. (1), for a given point r of the biologic body volume Vg, tha is initidly nor
necrotic, when the temperature T(r*,t) rases during the applicaive sesson,
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» 1), as the necrosis threshold T, (") is exceeded, the necrosis

t (F); the irreverghility of such necrods phenomenon is correctly taken into account: in
fact, as the temperature lowers a the end of the sesson, the presence of the term
h¥ (ﬂT'ﬂt) »0 for '”T."t<0forbids any decrease of the necrosis level. Since the

necross fidd n is interdependent with the temperature field T, one has to solve Eq. (1)
together with the Fourier-Laplace TTE:
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wherec is the product of the mass dendity times the specific heat, K is the thermd

conductivity and Q represents the heat sources. The living tissue is represented as the
uperpostion of two isotropic coexising continua, the solid molecular continuum and
the liquid haematic continuum, i.e. the micro capillary sysem [2]; therefore, the therma
conductivity can be expressad as the sum of two contributes:

K(F,Tn)=K, () +K, (F,Tn) =K, (F) +k, (F)W,(F,Tn) )
where K is the conductivity of the molecular part, whilst K, is the conductivity of the
haemetic part, that is assumed to be proportiond to the specific blood flow dengty W:
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where W,(F) is the micro-capillary flow density for T=T, (temperature of the arterial
blood), b (F),| andy areexperimenta best-fitting coefficients.

The additiond convective thermd exchange flow between the molecular medium and
the haematic medium, due to blood moation, [2] is represented as follows:

QC(F,T,n):-up(r’)xgl'-TpOHpr(r’,T,n) (5)
The physiologica metabolism has to be considered as a positive source term:
Qu (7. Tn)=F, (F.T)1-n) )

where F v gives the non-pathologica temperature-dependent metabolic heat for n=0.
Moreover, it has to be consdered the direct loss effect indgde the living tissue due to the

EM implant excitation, i.e. the sourceterm Qg,, (,t)for 7T Vg, see section I1.1
Inconclusion, in Eq. (8) wehave Q = Q: + Qu + Qem -

Finally, proper boundary conditions [1] have to be imposed on the boundary of the
implant volume V;:
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whee P, (t) and T, (t) ae the implant regulaion functions relevant to the power-
control phase Dtp (switch-on, switch off intervals) and to the temperature-control phase
Dtr (dabilized regime a the Curie-point), respectivedy; n is the outward normd unit
vector. Additional boundary conditions must be imposed in order to consder border
effects, e.g. in the presence of a surrounding medium &t temperature T, we let [2]:
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where S is the externd boundary of the body and h, is a proper therma exchange

coefficient. Fndly, the following continuity condition on temperature and heat flow
must be assumed on inner discontinuity surfaces Sy [2]:

T(rt)=T(rt); [Kn-NT]. =[kn-RT] ris ©
where apex "+ and "-' represent left and right limits dong the normal direction 1.
I1.1 The electromagnetic problem
From a dynamic point of view, it is an experimental evidence that therma and necrotic
transents (101-10' s) are much dower than EM ones; therefore, once fixed a sitable
time discretization grid {tn}ni v for the TTE and the BNE, a a given time t, the EM

induced power can be evaluated on the basis of the Poynting theorem by means of the
following expression:
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whereE(r,w;t,), H(F,w;t,), represent the dectric fidd and the magnetic fidd in the

frequency domain, respectivdy; w is the (angular) frequency of the excitation current
sources, the ‘additiond’ presence of time t, in the w-domain EM fidd argument takes
into account the dow-varying dteration of the EM properties of the medium due to the
smultaneous evolution of the temperature and of the necrosis leve: in fadt, in Vg the
complex eectric permittivity e is sgnificantly dependent both on T and n, whereas in V,
the complex magnetic permesbility m can meaningfully depend on T, as a consequence
of the trandtion phenomena between paramagnetic and ferromagnetic status; i=++4-1,
p(t) is the dow-varying power level modulation controlled by the operator during the
clinica sesson (switch-on/regime/switch off).

Starting by the w-doman Maxwell equations (J,(F,w), J,(F.w)ae the dectric and
magnetic sources which model the externa EM power generator),
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we decompose the EM field in the superpostion of an incident part plus a scettered part,
e gE, HY=gE, H g+8&E, Hp: the first one is equivdent to the radigtion thet the
same source system should induce in free-space,

1 By virtue of the previous dynamic considerations we can consider the T and n distributions relevant to
the anticipated time t,,_; instead of the current timet,; in such way an iterative interlaced procedure for the
solution of the EM problem in conjunction with the TTE-BNE system is obtained.
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and then obtainable una tantum on the ground of the dyadic Green functions, i.e.:
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Andogoudy to the solution reevant to free-space given by Eq. (13) we can obtain the
following integrd equation (whose numericd solution can be efficiently performed by
means of the Moment Method through an associated agebraic system [3,4]), where the
inhomogeneitiesof e and mplay the role of field sources:
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[I-RESULTS

The modd is vdidated through the comparison of numericd smulaions, rdevant to a
2D liver tissue geometry whereinto 4 therma needles are inserted, with experimenta
datarelevant to oncologic clinica sessons.
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Fig. 1 (UP) Temperature and necrosis expansion in a muscle region
with 4 implanted needles; plots from left to right are relevant to
crescent times t=100s, 400s, 700s, 1100s, regime temperature
Ti(t)° 105°C after the switch-on transient Dtp=[0s,100s]

Fig. 2 (LEFT): Comparison between experimental measured* and
simulated necrosis expansions r,, (around a single implant) vs.
timet.

t(s) . * Experimental data from clinical session were fumnished by Prof. Riccardc

0 200 400 600 80 1000 | Maceratini and Dr. Marcello Caratozzolo of the "IV Clinica Chirurgica-
Facoltadi Medicinae Chirurgia’ , La Sapienza University of Rome.
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