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Abstract

The Synthetic Function eXpansion (SFX) technique was previously developed and introduced by
the authors to reduce the memory storage and solution time of the MoM analysis of printed ar-
rays. The present communication deals with an approach that further enhances the computational
properties of the SFX approach by reducing the MoM matrix filling time via a multigrid-like tech-
nique.

INTRODUCTION

In many typical arrays the antenna extends over a surface that encompasses several wavelengths,
yet subwavelength discretization is to be used for the correct characterization of discontinuities
(like edges, recesses, bends, impedance steps, etc.). For such structures, a full-wave analysis can
be prohibitively expensive in terms of CPU time and memory occupation, especially if also the
beam forming network (BFN) is considered.

In the past, the authors proposed the Synthetic Function eXpansion (SFX) technique [1, and
references therein], that permits the analysis of large structures, since both computation time and
memory occupation are drastically reduced without affecting the solution accuracy.

The main reason to introduce SFX was the effort to reduce memory storage, thus enabling the
treatment of large structures. The SFX technique strongly reduces the linear system solution time,
a key factor in large structures where the N3 complexity of direct solvers is not viable, and where
the iterative solvers must face the intrinsic poor conditioning of these problems. SFX did not, per
se, reduce the filling time of the MoM matrix: this aspect is addressed here, with a multigrid-like
approach. The method can be applied to existing MoM codes, with minimal code modifications.

In order to facilitate the comprehension of the proposed algorithm, we will first briefly sum-
marize the basic ideas of the SFX technique.

THE SYNTHETIC FUNCTION EXPANSION METHOD

The SFX technique is a two-step algorithm. At the first step, the antenna domain (typically a
complex structure with BFN and many radiating elements) is decomposed into sub-domains (of
arbitrary shape) -termed “blocks”- and on each of them entire-domain basis functions -termed Syn-
thetic Functions (SF)- are generated numerically in the stand-alone configuration. At the second
step, these SFs are employed to represent the global solution.

The generation algorithm of the SFs, and their selection criteria, based on the degrees of
freedom of the electric field [2], is described in [3].
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At step 2, the SFs  
k

are used to represent the current on the entire structure, and in view of
(1) the block partitioning of the structure means also a block partitioning of the MoM matrix [Z].
Diagonal collect the interactions of basis functions f

n
within the same block, sub-matrices [Zb1b1 ],

while interaction between basis functions in two different blocks b1; b2 appear in off-diagonal sub-
matrices [Zb1b2 ].

All basis functions that are not included in any block are grouped together and will form a
separate sub-matrix (e.g. those on the BFN, if SFs are considered only on radiators).

Grouping the RWG coefficients of the M SFs of the block bi in the Nf �M matrix [ bi ] =

[ bi
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], the basis change from a given sub-matrix [Zb1b2 ] of the original MoM matrix
to the SF representation is:

[Zb1b2
SF ] = [ b1 ]T [Zb1b2 ][ b2 ] (2)

Since M � Nf , the transformation is a compression.
The CPU advantage of the SFX approach derives from the solution of the linear system. Using

the SFs in the solution process, the dimension of the resulting impedance matrix is drastically
reduced with respect to the initial one. Strongly reducing the dimension of the MoM matrix, the
time necessary for the solution of the system will drastrically drop down even considering the
compression overhead.

Since the computation of the ZSF (as in eq. 2) requires the availability of only the Zb1b2 sub-
matrices, memory occupation is drastically reduced: when the [Zb1b2SF ] sub-matrix is computed it
can be stored and the [Zb1b2 ] sub-matrix can be removed from the memory.

The maximum memory occupation required by the proposed scheme is dictated by the dimen-
sion of the largest block, or by the number of the subdomain basis functions not included in the
blocks, whichever is largest. Since the memory occupation scales with the square of the dimension
of the system, the reduction in memory occupation is very significant.

By this analysis, it results that the proposed method acts both on the reduction of the solution
time of the linear system, and on the memory occupation. We address next the issue of reducing
also the [ZSF ] matrix fill time.

MULTI-GRID MAPPING OF THE SF

The technique is based on the fact that a fine discretization is needed to account for strong, near-
field interactions, and hence, to generate the SFs and compute their self-interaction. On the other
hand, weaker, far-field interactions between SFs on “distant” blocks are insensitive to the current
details of the SFs due to the low pass filtering effect of the Green’s function; therefore, a coarser
grid would suffice to this aim. The proposed scheme has two grids (extendable to multi-grid),
taking advantage of the fact that finer grids are obtained in typical meshers by “h-refinement”
of coarser grids, so that both a coarser and (the derived) finer grids are available. The SFs are
generated on the fine grid, which is also used to compute the self- and near-couplings of them;
when computing the farther interactions, the SFs are mapped onto the coarser grid, and these
“coarser SF” are then used to compute their couplings. These non-contacting terms are the most
relevant in terms of number of MoM matrix entries.

The resulting scheme will be referred to as Discretization-Diversity SFX (SFX-DD).



On each block we will call f the Nf basis functions of the fine mesh, and F the Nc basis
functions of the coarser mesh, Nc < Nf ; also, we call 	 the sought-for coarse-grid approximation
of  in (2). On the coarse grid,
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and " is the error of the approximation. We determine the coefficients 	k� by requesting that the
error " be zero when tested onto the basis function of the coarser mesh, hF�; "i = 0;8� = 1 : Nc.
This results in the following equation for [	k]:

[	k] = [�c]�1[�cf ][ k] (4)

where [�cf ]: �cf
�� = hF�; f�i and [�c]: �c

�� = hF�; F �i are the projection matrices between the
basis functions of the coarser and fine bases.

The procedure can be iterated by further reducing the mesh cell size as the distance between
the blocks increases.

NUMERICAL EXAMPLE

The described method was applied to the analysis of a 4� 2 array of stacked patches with mono-
lithic feed shown in the inset in Fig. 1. This antenna was chosen because it has a complex structure
and two resonant frequencies (in the 1.6 - 1.9 GHz frequency band), yet it can be discretized with
a number of unknowns that still affords a standard MoM solution, so as to allow for accuracy
checks of the proposed methods. The following analysis is concentrated on the input reflection
coefficient, much more critical than other parameters.

At the finest level, as required by conventional MoM, the antenna is discretized by 2729 sub-
domain basis functions; it was divided in 5 blocks: 4 identical, each of them containing one of
the four arms, and one containing the remaining BFN. The 4 identical blocks have support on two
layers containing 2 pairs of stacked patches and part of the access lines (see Fig. 2). Each of this
block contains Nf = 618 basis functions. On the 4 blocks, a second mesh was generated, with
Nc = 198 basis functions. In this case Nf=Nc ' 3.

In this example, on each of the 4 identical blocks, 2 natural and 4 coupling SFs were used [3],
i.e. M = 6. On the BFN the initial discretization was maintained, and no SFs was used.

In Fig. 1 the antenna input reflection coefficient obtained by the SFX-DD approach is com-
pared with the result of the standard MoM solution and with the SFX approach. While simple grid
SFX yields results virtually indistinguishable from the reference, a slight deterioration is due to
the price paid for the faster SFX-DD approach. Note however, that resonance frequencies are not
altered.

In this simple example, the speed-up factor (defined as the ratio of the number of the matrix
entries to be computed using standard SFX of MoM and SFX-DD approach) is about 3. For
larger structures, where off-diagonal blocks dominate the entry count, the speed-up factor tends to
(Nf=N c)

2, where Nc is the average number of basis function on the coarser mesh.
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Figure 1: Comparison between different solution
schemes: Inset: the geometry of the 4 � 2 array

a) b)

Figure 2: Discretization-Diversity:
a) Fine mesh b) Coarse mesh
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