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Abstract 

A preconditioner for the full-wave analysis (e.g. MoM) of large periodic one-dimensional arrays of 
elements with general shape (not necessarily planar) is developed, based on the physical properties 
induced by periodicity for the infinite and truncated array problems. Using the preconditioner 
dramatically reduces the number of iterations needed to solve the linear system (e.g. the discretized 
electric field integral equation). Moreover, the right hand side of the preconditioned equation can be 
used directly as an approximate solution for initial design purposes.  

 
 

I. Introduction 
Computational resources needed for solving large array problems by the method of moments 

(MoM) include large times for matrix filling and solving as well as large memory requirements to store the 
MoM matrices.  The fill time can usually be reduced by using asymptotic evaluations of the mutual 
coupling between array elements. Furthermore, due to geometrical translational symmetry, it is possible to 
reuse coupling results for translated element pairs. To reduce the solution time, various algorithms have 
been developed that use periodicity-induced physical properties.  For example, the method of [1], [2] uses 
an a priori estimate of the fields scattered by truncated arrays, which behave as Floquet-modulated-
diffracted fields [3], to construct global basis functions. 

Here, we analyze array antennas or periodic structures with arbitrary excitation, and focus on 
reducing the solution time using accurate and physically-based MoM preconditioners in an iterative 
solution to find the current on the array elements. The preconditioner is constructed using properties 
induced by the periodicity. The general idea is that in many practical cases, most of the elements 
comprising the large array behave much like those of an infinite array, and this information is used to 
construct the preconditioner. As with any preconditioner, the solution procedure is accurate because the 
original integral equation is maintained. Our formulation is based on an identity relating the impedance 
and admittance operators for the infinite and finite periodic structures. The preconditioned problem is 
particularly advantageous when various solutions are desired for the same geometrical configuration. 
Once the preconditioner is constructed, the system is usually solved in only a few iterations, permitting 
the evaluation of various parameters such as element currents, element input impedances, active input 
impedances, reduction in array performance due to element failures, coupling between element pairs in 
the presence of the finite array, etc. The preconditioner is independent of the excitation, and therefore the 
preconditioned problem can also be efficiently used to analyze scanning properties of an array without 
reevaluating the MoM matrix or preconditioner. 

 In the present study we assume a one/two-dimensional periodic array configuration that is 
infinite along one direction and finite in the other, with general element geometry (not necessarily planar). 
This implementation characterizes most of the truncation effects in actual array problems, and edge effects 
are analyzed with a reduced computational effort. It is shown that with preconditioning, matrix condition 
numbers often fall by several orders of magnitude.  Furthermore, when the MoM system is solved using a 
stabilized biconjugate gradient algorithm, the number of iterations may be reduced from several hundred 
to a handful.  As stated, in many practical cases the first iteration (the preconditioned right hand side of 
the equation) is sufficiently accurate that it may be used as an approximate solution of the MoM system of 
equations. 
 
II. Statement of the Problem 
Consider an array as shown in Fig. 1, infinitely long in the y direction (either uniform or periodic) and 
truncated in the x direction. The excitation can be arbitrary, i.e., the illumination could be a plane wave or 
other incident field, or voltages may be applied directly to some of the array elements. For the 2D array in 
Fig. 1b, the only assumption is that in the y direction the excitation is equi-amplitude with a possible 



 

 

phase progression, reducing the problem to a two-dimensional analysis of a one-dimensional array. The 
numerical analysis thus reduces to consideration of a single row of elements along x, since the Green�s 
function accounts for the infinite dimension of the array along y. The standard electric field integral 
equation (EFIE) for the finite array in x is written as  

aa a aZ I V= , (1) 

which determines the current Ia on the actual array elements (the central row in the x direction, at y = 0). 
The moment matrix aaZ , whose elements represent interactions between basis and testing function pairs 
on the central row (using the Green�s function of a y-periodic linear array of point sources), is assumed to 
be partitioned into blocks representing interactions between pairs of array elements on the central row. We 
focus here on the construction of an effective preconditioner, i.e., a multiplicative matrix that 
approximates the inverse of the MoM impedance matrix. 

 

 

 

 

Figure 1. Arrays that are infinite in the y direction and finite along x. (a) An array of elements that are 
uniform in the y direction. (b) An array of elements that are infinite and periodic in y, with a uniform 
progressive phase shift in the y-direction.  

 
III. Formulation 
Consider first the two dimensional infinite periodic array formed by extending the actual array in the x 
direction in both directions.  The elements of the extended array constitute the virtual array.   Superscripts 
a and v denote the actual and virtual array, respectively (see the cross-sectional geometry in Fig. 2).  For 
this new problem, after proper partitioning, the EFIE and its inverse can be symbolically written as 
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These matrix equations relate the actual and virtual array problems. Note that the EFIE for the actual array 
(1) can be obtained from (2) by requiring that the current I v on the virtual array vanish. Combining the 
impedance and admittance matrices for the infinite array we derive the identities 
 

aa aa av vaY Z U Y Z= − ,                    
11aa av va aaZ U Y Z Y

−−   = −    , (3a,b)  

 
which have the following interpretations. First, when Yaa is used as a preconditioner for Zaa in (1), it 
regularizes the hypersingular part of Zaa since YaaZaa is equal to the identity operator U  plus a diffracted 
operator YavZva that contains no array element self interactions. Indeed, as shown in the figure below, 
when YavZva operates on a current I of the actual array, it produces voltage excitations Vv=ZvaI on the 
virtual array that in turn produce changes in current YavVv back on the actual array.  Furthermore, the 
current YavZvaI decays away from the array truncation as a diffracted current (ignoring, for simplicity, the 
possible presence of modes supported by the structure).  Second, (3b) relates the admittance (matrix 
inverse) operator [Zaa]−1 for the finite array to the sub-block Yaa  of the admittance matrix for an infinite 
array, with truncation effects represented by physical interactions between the actual and virtual array. 
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Figure 2. Impedance and admittance interactions between actual array and virtual array. The impedances 
are evaluated in free space. The admittances are evaluated in the presence of the infinite array, thus 
involving the solution of the entire infinite array problem with specific excitations. 

 
Note that Yaa is the restriction of the infinite array admittance matrix to the finite array. Away from the 
edges of the array, the term YavZvaI  is small since it represents a diffraction contribution that decays away 
from the edges. To avoid computing a matrix inverse, we therefore approximate [U−YavZva]−1 ≈ U +YavZva, 
which, again, approaches U for currents far from the array edges. The inverse of the MoM matrix thus 
may be approximated as  

                
1

,aa P P av va aaZ Y Y U Y Z Y
−

   ≈ ≡ +    .                             (4a,b)  

 
Further approximations may be made to any of the matrices on the RHS to simplify the preconditioner. 
Practically, for example, it is likely that the domains and/or ranges of these matrix operators must be 
windowed.  In the following we suppose the array consists of Nx array elements in the x direction. The 
current vector Ia and the known excitation vector Va are partitioned as Ia=[[I1], �[INx]]T,  Va=[[V1], 
�[VNx]]T, and the Zaa matrix is partitioned accordingly. The preconditioner need not include all the 
interactions since the region of significant influence of an array element usually extends to just a few 
nearby elements. Thus only a few interactions need be taken into account in constructing the terms Yaa  
and YavZva. In the next section we provide a possible algorithm to construct these terms; a number of 
additional variations of the approach may also be considered. A simpler version of the preconditioner can 
be obtained by neglecting the diffractive effects due to YavZva, i.e.,   [Zaa]−1 ≈ Yaa .  

IV. Construction of the Preconditioner from the Infinite Array Solution  
If the array is formed by Nx array elements in the x direction, the matrix Yaa is formed of Nx sub-blocks, 
though in practice we use a smaller number 2E+1 of sub-blocks, accounting only for the interactions 
between the nearest E array elements to the left and right of an element. The matrix Yav has infinite 
dimension, however, we approximate the virtual array using only F elements nearest the array edges. In 
practice, we may choose F = E so that all the sub-blocks of Yav replicate those of Yaa. Often, E and F can 
be as small as two or three. Analogous arguments hold for the evaluation of Zva, which reuses previously 
evaluated blocks of Zaa. A key feature of the approach is the fact that matrices Yaa and Yav can be evaluated 
from the solution of the infinite array problem as follows. We denote by [Z∞(kx)] the Ne×Ne element MoM 
matrix for a unit cell of the infinite array problem (infinite in x) with progressive interelement phase shift 
kx;   [Y∞(kx)] is its inverse. Furthermore, let [Yn

∞] denote the element-to-element mutual coupling 
admittance matrix between two array elements of the infinite array, n cells apart (n can be positive or 
negative). Matrices [Y∞(kx)] and [Yn

∞] are related by the Fourier series transform pair 
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which may be used to obtain [Yn
∞] once [Y∞(kx)] is computed for the infinite array. Note that [Y∞(kx)]  is 

periodic in kx with period 2π/dx, and that (unlike impedance matrices) [Yn
∞] ≠ [Yn], i.e. the element mutual 

admittance matrices for infinite and finite arrays are not identical. We summarize the computation of Yaa 
and Yav as follows: (a) Determine the active impedance matrix [Z∞(kx)] for a unit cell of the infinite array 
problem for / /x x xd k dπ π− ≤ ≤ , using the periodic Green�s function. (Though not discussed here, the 
computation of the Green�s function is accelerated using the Ewald method. See [4] for the 1D array (Fig. 
1a) and [5] for the 2D array (Fig. 1b).) This is a small array of size Ne×Ne. (b) Compute [Y∞(kx)] by 
inverting  [Z∞(kx)].  (c) Compute [Yn

∞] for all required n using (5b). (d) Construct Yaa as the block-Toeplitz 



 

 

matrix having [Yn
∞] as the nth block from the diagonal. Yav is constructed using the same matrix sub-

blocks [Yn
∞].  

V. Numerical Examples (1D Array of Open Cavities Invariant along z)  
An array of 10 thick open cavities is illuminated by a perpendicular TEz plane wave at f = 150MHz, which 
is far from cavity internal resonance frequencies. As depicted in the figure below, each array element is 
finely discretized, with a total of 115 elements on the inner and outer surfaces and 1 element on each end 
face, for a total of 232 subelements on each array element. Note that the small condition number (CN) of 
the preconditioned EFIE, and the dramatic reduction in the number of iterations when using Yaa as a 
preconditioner.  
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Further improvement is obtained using the preconditioned equation (U-YavZva)Ia= YaaVa  (see identity (3a)) 
since the replacement of YaaZaa by U-YavZva eliminates the computation of the self interactions; effectively, 
we analytically extract the identity matrix U from YaaZaa.  In a second test for this array of cavities, plane 
wave excitation was replaced by single element excitation using a voltage generator placed on top of the 
4th element (from the left). Again, the system was solved in only two iterations using the previously 
computed matrices Zaa and Yaa. It is important to note that for a numerical integration of (5b), which 
samples the Brillouin zone, using only 21 sample points yields a preconditioner that still only requires 
three iterations for the solution of the MoM equation. This shows that the preconditioner is not 
�expensive� to compute even for large array problems (see [6] for a physical explanation).  
 
Approximation of Inverse by Preconditioner. The two preconditioners Yaa and YP are now used to  
approximate the inverse matrix [Zaa]−1. Currents directly evaluated as Ia ≈YaaVa , or as  Ia ≈ Yp Va, without 
solving a linear system, are compared with the �exact� solution provided by the EFIE ZaaIa =Va solved 
numerically. The current sampled on the top-most point of each element is plotted below. Use of the 
simple preconditioner Ia ≈YaaVa, which contains low-order diffraction effects, provides good results, while 
the more elaborate preconditioner Ia ≈ Yp Va slightly improves the current estimate. It is expected that 
arrays that support modes (surface waves) would require the more elaborate Yp to accurately estimate 
mode reflection at the edges. 
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Equation Solved (f=150MHz) CN Iterations
ZaaIa =Va 7695 649 
YaaZaaIa = YaaVa          E=10   5 2 
YpZaaIa= YpVa             E=10 (F=8) 5 2 
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