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Abstract 
In this work the problem of electromagnetic wave scattering by a perfectly conducting 
wedge in uniform translating motion is treated on the ground of the Frame Hopping 
Method, by means of a plane-wave spectra representation approach: the solution is found 
both through an exact analytical procedure and through the application of two different 
numerical techniques that can be used for solving diffraction problems by moving objects 
with arbitrary shape. 

 
I-INTRODUCTION 
The solution of electromagnetic (EM) diffraction problems by scattering objects in uniform 
translating motion can be obtained on the ground of the covariance properties of the 
electrodynamic 4-tensors. In fact the expressions of the EM field, as measured by 
observers in different inertial reference frames in relative motion, can be interrelated by 
means of the relativistic Lorentz Transformation formulae. On the ground of such 
transformations it is possible to establish  the Frame Hopping Method [1], that was 
pioneered by A. Einstein in the foundation work of the Special Relativity Theory [2] for 
the 1D problem of EM reflection by a translating mirror. The major drawback of the FHM 
for application-oriented problems is that the relativistic covariance transformations become 
rather cumbersome for a generic EM field when expressed in terms of the usual 3-vector 
notation. On the other hand, in the case of an EM Plane-Wave (PW) and, by virtue of 
linearity, of a PW-expandable EM field it is possible to express the relativistic 
transformation formulae in terms of simple alteration rules for wave parameters, see [3,4]. 
Therefore, two simplification techniques can be developed: the PW Local Approximation 
(PWLA) and the PW Integral Expansion (PWIE). In the first case [1], once the scattering 
problem is solved in the co-moving frame through the customary motionless approach, the 
EM field is approximated by means of a single plane-wave term for every far-field location 
considered; then the Lorentz transformation to the laboratory frame are performed by 
operating on such single plane-wave terms through the parameter alteration rules. In the 
second case [3,4], the solution in the co-moving frame has to be found in term of a PW 
integral representation, so that, by virtue of the linear nature of the relativistic covariance 
relation, the Lorentz transformation to the laboratory frame can be applied by operating on 
every plane-wave spectral component through the parameter alteration rules. The PWLA 
technique is formally simpler but its solutions are approximated and sufficiently accurate 
only in points which are far away from the trajectory of the target; on the other hand PWIE 
furnishes exact solutions. 
In this work we apply the PWIE to the specific case of a Perfectly Electric Conducting 
(PEC) wedge which uniformly translates in vacuo, that has been previously treated by 
other authors only by means of the PWLA [5]. In particular, the PWIE of the scattered 
field is based on the Fourier integral representation of the Non-Integer Cylindrical Waves 
(NICW) [6,7]; in fact, the simple linear procedure of Lorentz-transforming one by one the 
terms involved in the expansion is not applicable to the Sommerfeld formula which is 
commonly used in the literature for representing wedge diffraction [8], because it consists 
in an integration over a complex spectral variable, whose non-real values furnish field 
terms to the integral summation which (unlike plane-waves) do not individually verify the 



Helmholtz separability condition in vacuo, i.e. they are not particular solution of the 
Maxwell equations and then they are not Lorentz-covariant. 
The analytical results have been used as a benchmark for testing two numerical techniques, 
the Relativistic Physical Optics (ROP) and the Relativistic Moment Method (RMM), that 
have been developed, on the ground of the FHM-PWIE approach, for studying diffraction 
problems by moving objects with an arbitrary geometry [9].  
 
II-FORMULATION 
We distinguish between two inertial reference frames, the laboratory frame Σ and the co-
moving frame Σ′, where the scattering PEC wedge W′ appears at rest; the relative velocity 
is ˆcβ z , where 0 01c µ ε=  is the light speed in vacuo, see [3,7,9]. For an observer in 
frame Σ the incident EM field, that is assumed to be an arbitrarily polarized mono-
chromatic PW with angular frequency ω, has the following expression: 
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 As a first step of the FHM, by applying Lorentz transformation to Eq. (1), we obtain the 
expression of the incident EM field as observed in the co-moving frame Σ′ at position 
r′=[x′, y′, z′]=[x, y, γ (z-βct)] and time t′=γ (t-βc-1z), ( 21γ β= + − ) : 
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with PW parameters altered according to the following rules [3,4]. 
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As a second step of the FHM, we solve the motionless diffraction problem in frame Σ′  in 
order to obtain a PW expansion of the scattered EM field [ ]s s′ ′E , H :  
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vector, and s s,′ ′E H  are the PW Spectral Amplitude Coefficients (PWSACs) , see sec. II.1. 
Finally, as a last step of the FHM, we apply the Σ′→Σ Lorentz transformations to Eq. (6) 
and obtain the PW expansion of the scattered field in the laboratory frame (for minx x′> ): 
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with the PW parameters obtained by the following rules [3,4]. 
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II-1 PWSACs EVALUATION 
Analytical Solution – Firstly, the scattered EM field is expanded as a discrete 

summation of NICWs according to the Radial Transmission Representation [10]; 
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where νk are non-integer indexes and 
k kν ν ′ ′ e ,h  are vector constant coefficients depending 

on the wedge geometry and on the incident field features [7,10]; secondly, each νk-order 
NICW is expressed in terms of a Fourier integral expansion (see [6,7] for details): 
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so that the exact expression of the PWSACs in Eq. (6) is obtained:  
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Numerical Techniques – On the ground of the Equivalence Theorem (ET), the 
PWSACs in Eq. (6) can be related to the expression of the total EM field 
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a) RMM: The total EM field on ∂W can be exactly evaluated through the 
following ET- based surface integral equation [11]: 
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where ( ) ( ) 1 14 expG i cπ ω− −′ ′ ′ ′ =  r r r ; 0ˆ ′n , ˆ ′n are the outward unit normal vectors at 

points 0 , W′ ′ ′∈ ∂r r , respectively; 0′∇  is the ‘nabla’ operator with respect to the Σ′ space-
coordinates at point 0′r . Eq. (15) has to be solved together with the PEC condition 

( )ˆ ,  W′ ′ ′ ′ ′× = ∈ ∂n E r 0 r ). By numerically solving on the ground of the Moment Method 
[12], we can get an approximation of the total EM field on W ′∂ , and then, through Eqs. (6) 
and (14), a PW expansion of the scattered EM field valid in the vacuum space, that are 
asymptotically exact as far as the discretization lattice is taken to the continuum limit [9]. 

        b) ROP: On the other hand, the ROP assumes an aprioristic 
approximation of the total EM field on W ′∂  in order to compute the PWACs comparing in 
Eq. (6); in the case of point, for a PEC wedge, we let, see [9,13]:  
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III RESULTS 
In Fig. 1 the exact analytical solution for the moving PEC is compared with results relevant 
to the application of the RMM and of the ROP. As one can see, for such critical geometry 
(points on the edge of the wedge have non-unique tangential plane) the ROP, that inherits 
all the limitations of the usual motionless case, is capable to predict only the global 
bandwidth broadening and the position of the principal in-band peaks, whereas the RMM 
furnishes a more accurate determination of the whole spectral pattern (in this case a Point-
Matching implementation [12] for the RMM was used; the norm of the discretization 
lattice was taken the same, mutatis mutandis, in ROP and RMM for best comparability). 
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Fig.1 Results relevant to the spectral amplitude of the Poynting vector 

( ) ( ){ } ( ){ }1
2P , ; , ;t s t st tΩ = ℑ Ω × ℑ Ωr rE H  vs. normalized frequency Ω/ω ( { }  ;tℑ Ω represent the t→Ω  

Fourier transform). Continuous line in graphics a) and b): Analytical result [subscript ‘A’] for a indefinite 
wedge: PA(Ω)/PA(ω);  dotted lines in graphics a) and b): results relevant to application to the case of a finite 
wedge (height h=25λ, radius ρ=25λ, where λ=2πc/ω) of the RMM [subscript ‘M’], PM(Ω)/PA(ω), and of the 
ROP [subscript ‘P’], PP(Ω)/PA(ω), respectively. Geometric parameters (see [7]): wedge internal angle χ′=5°; 
ψ=87.25° is the wedge orientation with respect to the relative velocity 0.02×c; the incident PW propagates 
along the normal direction, θ =270°, with circular polarization; observation point ( ) ( ), , 0.9 ,0,0X x y z λ= = . 
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