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Abstract 
In this paper, a uniform high frequency formulation of the Green’s Function for an arbitrarily contoured 
finite array of electric dipoles is presented. The planar array is thought as a sequence of parallel finite 
linear arrays and its field is obtained by numeical superposition of the dominant field contributions from 
each constituting linear array. The linear array is represented as the difference between two spatially 
shifted semi-infinite linear arrays. The radiation from each semi-infinite linear array is uniformly 
asymptotically evaluated, to yield a field representation in terms of truncated Floquet waves and their 
corresponding tip diffracted contributions. This procedure leads to desccribe the total radiated field as 
the sum of elementary field contributions arising from the actual rim of the planar array, plus elementary 
truncated Floquet waves. 

INTRODUCTION 
Recently, a high-frequency formulation of the Green’s Function for semi-infinite [1] or sectoral [2] arrays 
of dipoles has been introduced. It has been found that an efficient representation of the Green’s Function 
(GF) for finite arrays may be obtained when the Floquet Wave (FW) expansion of the infinite array GF is 
augmented by additional asymptotic ray contributions arising from edges and vertices of the finite 
structure. This asymptotic formulation can be cast in the form of a generalized GTD ray theory which 
includes FWs truncated at appropriate shadow boundaries, with corresponding FW-induced edge and 
vertex diffracted waves.  
However, the description in terms of FW-induced edge and vertex diffracted waves becomes cumbersome 
for arrays with irregular contour, for the intrinsic ambiguity in defining edges and tips. An alternative, 
more general, representation is proposed in this paper; this alternative approach consists of expressing the 
total radiated field in terms of contributions from equivalent point sources distributed along the contour of 
the array. 
The planar distribution of sources is regarded as the superposition of suitably-phased uniform-amplitude 
parallel finite linear arrays; the radiation of each constituting finite linear array is expressed as the sum of 
truncated FWs relevant to the infinite linear array plus the corresponding diffracted fields at the two end-
points. This is obtained by constructing the field radiated by the finite linear array as the difference 
between the radiation of two semi-infinite linear arrays. In order to provide practical tools for numerical 
calculations, the spectral integral form is then asymptotically evaluated to yield the relevant truncated 
FWs and two FW-induced diffracted fields. Next, the global array field is reconstructed by superimposing 
the dominant asymptotically field contributions arising from the constituting finite linear arrays.  
The proposed approach increases the computational efficiency and provides final expressions for the 
diffracted FWs that are uniformly valid at any observation point. The line-by-line strategy followed here 
easily allows the introduction of tapering along the direction transverse to the lines, as well as along the 
lines, by the inclusion of slope diffraction effects. 
The accuracy and efficiency of the asymptotic formulation for arbitrarily contoured arrays is discussed 
and its feasibility and effectiveness is demonstrated by numerical simulations over an eight-sided array. 

FORMULATION 
The geometry of the problem, which is depicted in Fig. 1(a), shows an arbitrarily contoured array of 
elementary dipoles directed along the unit vector p̂ . They are fed with x-dependent amplitude and 



 

linearly phased currents. The interelement period along x and y are dx and dy, respectively, and cos xk γ  
and cos yk γ  denote the corresponding linear phase gradients. Two perpendicular periodicity directions 
have been assumed and a rectangular reference system is defined with its x and y axes parallel to them. It 
should be noted, however, that this procedure is applicable to arrays with non orthogonal grid as well. 
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Fig. 1. Geometry of the problem. (a) Arbitrarly contoured planar array and its subdivision into linear subarrays. 

(b) Semi-infinite linear array. 

The electric field radiated by the planar array is obtained as the superposition of the fields radiated by 
linearly-phased, uniform-amplitude parallel finite linear arrays (Fig. 1). Each one of them is represented 
as the difference between two spatially shifted semi-infinite linear arrays. The basic constituent of the 
procedure is therefore the formulation and the relevant asymptotic analysis of the field radiated by a 
linearly-phased semi-infinite linear array. Cylindrical and spherical local reference systems are introduced 
with their axes coincident with the axis of the linear array (Fig. 1(b)). For reasons which will be clear 
afterwards, the origin of the reference systems is located at a point shifted half a period with respect to the 
first element of the array  
For the sake of simplicity in the explanation let us refer to the magnetic vector potential. This can be 
obtained by direct element-by-element summation over the individual dipole contributions, which can be 
also rephrased in terms of spectral Fourier counterpart: 
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where ρ is the distance from the y-axis. 
By interchanging the sequence of the n-sum and spectral integration operations, the resulting n-series is 
expressed in a closed form, obtaining: 
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After using spherical coordinates in the spectral and spatial domains (ky=kcosθ, y=Rcosβ) and the 
approximation for large argument of the Hankel function, eq.(2) becomes:
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To perform the asymptotic evaluation of eq.(3), the integration contour is deformed into the steepest 
descent path (SDP) through the pertinent saddle point θ=β (Fig. 3). The high-frequency solution is 
therefore obtained as the summation of the integral along the SDP and the residues at the poles 

( )( )1cos cos 2p y yp kdθ γ π−= +  intercepted during the path deformation. 



 

The residue contributions represent the cylindrical FW’s of the infinite linear array, with their domain of 
existence terminated by a conical shadow boundary (CSB); the discontinuities at the CSB are uniformly 
compensated by the tip-induced spherical diffracted wave provided by the SDP integral (Fig. 2 (b)). 
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Fig. 2. (a) Contours of integration in the θ-plane. (b) Ray description of the radiation from the array. 

The asymptotic evaluation, performed via the Van der Waerden method [3], yields : 
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FW
pA  are the Floquet waves of the infinite linear array: 
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( )F ⋅  is the UTD transition function [4] and ( )U ⋅ is the Heavyside unit step function. From (4)-(6), the 
high-frequency field from the total array is obtained by superimposition of the linear array asymptotic 
waves. 

NUMERICAL RESULTS 
The procedure outlined so far has been applied to an eight-sided array of 432 parallel dipoles and 
compared with a direct element-by-element summation. As a first example, an array with uniform 
amplitude excitation is now considered. The array is characterized by interelement periods dx=0.7λ and 
dy=0.9λ along x and y, respectively, and by the linear phase gradients cos 2xk kγ =  and cos 2yk kγ = . 
Fig. 2 shows the amplitude of the θ- and φ- components of the radiated field. 
As a second example, a similar array configuration is then considered, with dx=0.5λ,  dy=0.9λ and a 
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has been obtained by superimposition of two uniform amplitude, linear phase excitations. Fig. 3 shows 
the relevant amplitude of the θ- and φ- components of the radiated field. 
In both examples, the agreement between the results from this formulation and the reference solution is 
quite satisfactory. 
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Fig. 3. Normalized electric field for a uniform amplitude octagonal array. The asymptotic solution (circles) is 

compared with the reference solution (continuous line). 
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Fig. 4. Normalized electric field for a tapered octagonal array. The asymptotic solution (circles) is compared with 

the reference solution (continuous line). 
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