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Abstract
A sampling interpolation algorithm for reconstructing the field, radiated over a plane in

the antenna near-field region from data acquired via a bi-polar scanning, is developed in
this work. It is based on the theoretical results relevant to the nonredundant field repre-
sentations over curves and surfaces. The use of an oblate spheroid as modelling of the
source allows to reduce the number of required samples with respect to a spherical
modelling when considering quasi-planar antennas. Numerical examples assessing the
efficiency and the stability of the algorithm are presented. Such a reconstruction process
allows to get an efficient near-field–far-field transformation with bi-polar scanning, which
requires a number of data remarkably lower than that needed by the standard approach.

1.  INTRODUCTION
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Fig. 1 -  Bi-polar scanning.

As well-known, the evaluation of antenna far-field
(FF) from near-field (NF) measurements allows one
to overcome those drawbacks which, for electrically
large antennas, make unpractical to measure antenna
patterns on a conventional FF range. Among the NF-
FF transformation techniques, that employing the bi-
polar scanning [1, 2] is particularly interesting. In
such a scanning the antenna under test (AUT) rotates
axially, whereas the probe is attached to the end of
an arm which rotates around an axis parallel to the
AUT one. This allows to collect the NF data on a
grid consisting of concentric rings and radial arcs
(see Fig. 1). The bi-polar scanning maintains all the
advantages of the plane-polar one [3, 4] while pro-
viding a simple and cost-effective measurement
system. As a matter of fact, since the arm is fixed at
only one point and the probe is attached at its end,
the bending is constant and this allows to maintain
the planarity. Moreover, rotational movements are preferable to the linear ones, since
rotating tables are more accurate than linear positioners. Unfortunately, the original
approach in [1, 2] does not take advantage of the nonredundant representations of
electromagnetic (EM) fields [5] and, as a consequence, it requires a useless large amount of
NF data. Aim of this paper is to develop an efficient NF–FF transformation technique with
bi-polar scanning from a nonredundant number of data.

2.  SUMMARY OF PREVIOUS RESULTS
In this section, the theoretical results [5], concerning the nonredundant representation of

the EM fields radiated by sources enclosed in arbitrary convex domains with rotational
symmetry and observed on surfaces having the same symmetry, are briefly summarized
with particular reference to the case of a quasi-planar antenna and a planar observation
domain. An effective modelling for quasi-planar sources is obtained by choosing the
convex surface S enclosing the AUT coincident with an oblate ellipsoid having major and



minor semi-axes equal to a and b (see Fig. 2). Since a plane in the NF region can be
represented by radial lines and rings, in the following we deal with the field representation
on an observation curve C described by an analytical parameterization r = r(x). With
reference to C, let us introduce the “reduced” field [5]:

F x( ) = E x( ) e jg x( ) (1)

where g(x) is a phase function to be determined. For large antennas, the “bandlimitation”
error, occurring when F is approximated by a spatially bandlimited function, becomes
negligible as the bandwidth exceeds the critical value
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where k is the wavenumber, r' is the generic source point and R(x, r' ) = r(x) - r' . Therefore
such an error can be effectively controlled by choosing a bandwidth equal to c' Wx , c' > 1
being an excess bandwidth factor. To obtain a nonredundant representation, for each x, we
must minimize the “local” bandwidth w(x). For what concerns the optimal parameter x, it
must be determined [5] by requiring that w(x) is constant. By adopting Wx = kl ' /2p  (l '
being the length of the intersection curve C ' between the meridian plane passing through
the observation point P and  S), we get [5]:

g = ka v
v2 - 1

v2 - e2 - E cos-1 1 - e2

v2 - e2 e2
Ê

Ë
Á

ˆ

¯
˜

È

Î
Í
Í

˘

˚
˙
˙

 ; x = (p 2) E sin-1u e2( ) E p / 2 e2( )[ ] (3)

where E(◊|◊) denotes the elliptic integral of second kind [6], e = f/a is the eccentricity of the
ellipsoid and u = r1 - r2( ) / 2f , v = r1 + r2( ) / 2a  are the elliptic coordinates, r1,2  being the
distances from P to the foci and 2f the focal distance. Moreover,

sin-1 u = J• (4)

J •  being the polar angle of the asymptote to the hyperbola through P. When the
observation curve is a ring, the phase function is constant and it is convenient to use the
azimuthal angle j as parameter. The corresponding bandwidth is [5]:

Wj x( ) = ka sinJ • x( ) (5)

3. FIELD RECONSTRUCTION OVER A PLANE FROM BI-POLAR SAMPLES
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Fig. 2 - Geometry of the problem.

A point on the plane in the NF region can
be specified by the bi-polar coordinate
system using the AUT angle a, the angle b
and the length L of the arm (see Fig. 1). The
standard polar coordinates are related to
them by the following relations:

r = 2Lsin b 2( )  ; j = a - b 2  (6)

A convenient way to obtain a non-
redundant field representation over a plane
from bi-polar samples is to describe it by
means of radial lines and rings, as in the
plane-polar case. Note that the way of col-
lecting the data in a bi-polar scanning system
implies that the starting sample at a = 0  on



the n-th ring is shifted by j0 xn( ) = - bn 2  (see Figs. 1 and 2) with respect to the
corresponding one in the plane-polar scanning. As a  consequence, according to the
previous results, the reduced field at any point over the plane can be reconstructed from the
bi-polar data via the following optimal sampling interpolation formula:

F x,j( ) = WN x - xn( ) DN'' x - xn( ){
n=n0 -q+1

n0 +q

Â F xn ,jm,n( ) WMn
j - jm,n( )DMn"

j - jm,n( )
m=m0 -p+1

m0 +p

Â } (7)

where n0 = Int x / Dx( ), m0 = Int j - j0(xn )( )/ Djn( )  are the indexes of the sample nearest on
the left to the output point, 2q, 2p are the number of retained samples along x and j, and

xn = nDx = 2np (2N"+1); jm,n = j0(xn ) + mDjn = j0(xn ) + 2mp (2Mn" + 1) (8)

N"= Int(cN' ) + 1 ; N' = Int(c' Wx ) + 1 ; N = N"-N' (9)

Mn" = Int(cMn' ) + 1  ; Mn' = Int(c*Wjn
) + 1 ; Mn = Mn"- Mn' (10)

c* = c* x( ) = 1 + c' -1( ) sinJ • (x)[ ]-2/3
(11)

c > 1 being the oversampling factor, needed to control the truncation error. Moreover,

DM" x( ) =
sin 2M"+1( )x 2[ ]
2M"+1( )sin x 2( ) ; WM x( ) =

TM 2 cos(x 2) cos(x0 2)( )2 - 1[ ]
TM 2 cos2(x0 2) - 1[ ] (12)

are the Dirichlet and Tschebyscheff Sampling (TS) functions [4, 5], respectively, wherein
TM ◊( ) is the Tschebyscheff polynomial of degree M. In (12) x0  is equal to q Dx  or p Djn,

4.  NUMERICAL RESULTS
In the following we show some numerical tests relevant to a uniform planar circular

array (see Fig. 1) having diameter 2a = 31.2 l, l being the wavelength. Its elements are
elementary Huygens sources linearly polarized along the y axis and are radially and
azimuthally spaced of 0.6 l. The array has been modelled as enclosed in an oblate ellipsoid
having a = 16 l and b = 2 l. The measurement plane is 18 l  away from the antenna center
and the bi-polar scanning system is characterized by bmaxª 62° and an arm length L = 80 l,
so that the NF data lie in a circular zone of radius ª 83 l .

Figure 3 shows a representative reconstruction example of the NF y-component on the
radial line at j  = 90°. As can be seen, the exact and recovered curves are practically
indistinguishable. Moreover, to assess in a more quantitative way the algorithm perfor-
mances, the maximum and mean-square reconstruction errors (normalized to the field
maximum value over the plane) have been evaluated for c = c' = 1.20. The corresponding
values are reported in Fig. 4. The algorithm stability has been tested by adding random
errors to the exact samples. These errors simulate a background noise (bounded to Da dB in
amplitude and with arbitrary phase) and an uncertainty on the field samples of ±Dar dB in
amplitude and ±DF degrees in phase. As shown in Fig. 5, the algorithm is stable.

The proposed algorithm has been applied to efficiently recover the plane-rectangular
data, needed for the NF–FF transformation. The corresponding E-plane pattern, recon-
structed from the recovered plane-rectangular data lying in a 100l ¥ 100l  square grid, is
shown (crosses) in Fig. 6. The pattern reconstructed from the exact plane-rectangular field
samples lying in the same grid is also reported as reference (solid line) in the same figure.
As can be seen from this comparison, also the FF reconstruction is very accurate, thus
assessing the effectiveness of the developed technique. It may be interesting to compare the
number of data (7,266) needed by the proposed technique with that (61,259) required by
the standard bi-polar scanning technique [1, 2] to cover the same scanning zone.



-60

-50

-40

-30

-20

-10

0

-70 -50 -30 -10 10 30 50 70

R
el

at
iv

e 
fi

el
d 

am
pl

it
ud

e 
(d

B
)

radial distance (wavelengths)

p = q = 6c' = 1.20

c = 1.20

-100

-90

-80

-70

-60

-50

-40

-30

-20

2 3 4 5 6 7 8 9 10 11 12 13 14

N
or

m
al

iz
ed

 r
ec

on
st

ru
ct

io
n 

er
ro

rs
 (

dB
)

p = q

maximum error

mean-square error

c' = 1.20

c = 1.20

Fig.3 - Amplitude of the NF y-component Fig.4 - Normalized reconstruction errors.
on the radial line at j = 90∞ .  Solid   
line: exact. Crosses: interpolated.
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Fig.5 - Amplitude of the NF y-component at Fig.6 - FF pattern in the E-plane.  Solid li-
j = 90∞ .  Solid  line: exact.   Crosses: ne: reference.  Crosses: reconstruct-

 interpolated from error affected data. ed from bi-polar NF measurements.
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