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Agenda
Ray-chaotic boundary-value problems (BVPs);

Heuristics: From Fermi’s bouncing balls to
bouncing photons/rays;

A New paradigm in EM ray-chaos
• Both internal and external,
• Ray-optical analysis,
• Full-wave analysis (TE incidence, internal and external 

fields);

Digression: “Wave chaology”;

Conclusions and open issues.



Ray-chaotic BVPs

Chaos = exponentially sensitive dependence on 
initial conditions in deterministic systems

complex/unpredictable/irregular behavior;

Ray (point-particle) chaos paradigms:
• The Sinai-Bunimovich (internal) billiards

[Sinai, Russ. Math.Surv. 25, 137, 1970];

• The 3-disk (external) scattering problem
[Blumel & Smilanski, Phys. Rev.Lett. 60, 477, 1988].

More obvious chaotic phenomena in EM systems show up as an effect 
of constitutive  non-linearity, non-linear radiation pressure [Pinto & Pierro, 
Phys. Lett. A185, 14, 1994], etc. 



Heuristics: From Fermi’s bouncing 
balls to bouncing photons

A pointlike ball falling under gravity upon an  elastic vibrating 
table

It was studied by Pustil’nikov [Trans. Moscow Math.
Soc. 2,1,1978] in connection with Fermi’s model
of charged particle acceleration by interaction  with
moving magnetic fields, relevant to cosmic rays [Phys.
Rev. 75, 1169, 1949].

It became popular as a nicely viable illustration of KAM 
theorem in 2-degrees of freedom [see, e.g., Lichtenberg & 
Lieberman, Regular and Stochastic Motion., Springer Verl.,
Berlin,1990].
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Heuristics: From Fermi’s bouncing 
balls to bouncing photons (cont’d)

A similar behavior is observed by allowing a nonzero 
(albeit small) initial transverse momentum component, 
and a fixed, periodic-in-space (undulated) wall [Pierro &
Pinto, 1999].

The photon analog of the above modified Fermi-
Pustyl’nikov problem is obtained by propagating an 
oblique (           ) ray (photon) through a graded-index
dielectric slab:

backed  by  an  undulated (2-D) metallic surface, in the 
paraxial approximation.

0≠xk

zenrn ||
0)( γ−=



Problem geometry

Undulated perfectly-conducting surface topped by a 
tapered (lossless) dielectric, vacuum-matched at z=0.
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Part – I

•

Ray Analysis



Ray trajectories: Test case 1

/* Coating parameters */
h = 0.75;     /* Coating thickness */ 
n(0) = 20.0 /* Coating refr. index at z=0 */
n(h) = 1.0   /* Coating refr. index at z=h */

/* Backing conductor profile */
z (x) = z0 +a log[c+b cos(2px/a)]

/* Backing conductor profile parameters */
b = 1.05; c = 2.05; a = 0.8;  z0 = -0.5+ h;

qi =p/9 , Dqi /q i = 10-3   /* Incidence angles */
xi =1.58 a /* Incidence point */



Ray trajectories

Nearly co-incident rays spread widely

incident rays

emerging 
ray 1

emerging 
ray 2



Ray trajectories (cont’d)

Nearly co-incident rays spread widely

incident raysemerging 
ray 1

emerging 
ray 2



Ray trajectories (cont’d)

Nearly co-incident rays spread widely

incident raysemerging 
ray 1 emerging 

ray 2



Ray trajectories (cont’d)
Ray paths split-up exponentially in time
Examples: 
• Averages over 100 different incidence points in (0,a)
• n(0)=14

qi = p/12 qi = 3p/12 qi = 5p/12
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Ray trajectories (cont’d)

Measure of irregular subset of (0,a)
blows up with  n(0)

Examples: exit angle qo vs. scaled incidence abscissa       
for qi = p/4x x a=

n(0)=1.4 n(0)=15 n(0)=90



Ray trajectories (cont’d)

Measure of (ir)regular subset of (0,a) almost 
independent on incidence angle

Examples: exit angle qo vs. scaled incidence abscissa       
for  n(0) = 14x x a=

qi = p/12 qi = 3p/12 qi = 5p/12



Ray trajectories (cont’d)
Regular islands observed at all scales

Examples: exit angle qo vs. scaled incidence abscissa       
for  n(0) = 15 and qi = p/4x x a=

( )0,1x ∈ ( )0,0.01x ∈ ( ).004,.005x ∈



Ray trajectories (cont’d)

Cumulative distributions of exit angles
• 104 incident rays in a cone of Dq @ 10-3

• n(0) = 14

qi = p/12 qi = 3p/12 qi = 5p/12
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Ray trajectories: Concluding remarks

Rays tend  to  be  trapped, executing many back-forth 
hops before escaping;

Nearby incident  rays spread exponentially (chaos!);

Narrow incident  beams produce  scattered fields with 
uniform exit-phase & exit-angle distribution at any 
incident angle
• Potential applications: radar countermeasures;

If losses are included, strong attenuation of exiting  rays  
& uniform  power deposition (no hot-spots) might be 
expected

• Potential applications: smart absorbers.



Part – II

•

Full-Wave Analysis
- Time-harmonic exp(jω t)
- TE incidence



Full-wave solution - TE

~E(r) = E0ûy

1X
n=¡1

bn exp [¡j(knxx+ knzz)] ; z ¸ 0

Assume exponential dielectric profile, vacuum-matched at 
z=0

Use Maxwell (div D) equation  to show that the (only 
nonzero component of the) electric field is ruled by 
Helmholtz equation:

Expand internal & reflected fields into appropriate Floquet
series

0E)z(kE 22 =+∇

~E(i) = E0ûy exp ¡jk0(x sin µi ¡ z cos µi)
~E(t) = E0ûy

1X
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cn(k0z) exp (¡jknxx) ; z < 0
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Full-wave solution – TE (cont’d)
Capitalize on known solution                        of

(     any Bessel function) to write down internal 
expansion coefficients  cn(z) as

where (Hankel)

Äu+ ¸2e2z¡º2 u=0
zu C eν λ =  
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Full-wave solution – TE (cont’d)
From (curl E) Maxwell equation

derive incident, reflected and internal  transverse 
magnetic fields 

0
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Full-wave solution – TE (cont’d)
Use boundary conditions at  z=0

to eliminate  bn,

Enforce boundary conditions at z=z(x)

8><>:
±n0+ bn = unUn(0)+ vnVn(0);

kzn(±n0¡bn) =¡jk0
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Full-wave solution – TE (cont’d)
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Full-wave solution – TE (cont’d)

H(1;2)
º
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µ
2¼

a
x
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To compute Fourier coefficients of Hankel functions, use

i) Neumann addition formula

ii) Fourier Bessel expansion    

iii) well known integral [Prudnikov et al., Integrals and Series, 
Gordon  &  Breach,  NY,  1992, 2.12.27]
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Full-wave solution – TE (cont’d)

The resulting expansions are relatively handy
• Rapidly- converging, easily computable

Boundary conditions at z=z (x) become

H(1;2)
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Full-wave solution – TE (cont’d)

The problem is reduced to (truncation and) solution of 
an infinite linear system in the unknowns un, vn. 

As a rule-of-thumb , the system can be  truncated 
at order  ~ a/l(0)

un
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zFull-wave simulations - Internal field

Parameters:
a/l=6, q i=p/4
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(3D plot)
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Full-wave simulations - Internal field (cont’d)
Complex patterns set in at a/l@ 1
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Full-wave simulations - Internal field (cont’d)
Meandric nodal lines (Chladni’s phenomenon) 

Example: a/l=2, qi=p/4

Re[E] =0 Im[E] =0
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Digression: Wave chaology
The general question is posed about the fingerprints (if any) of ray 
(asymptotic, short-wavelength) chaos in the full-wave regime

Helmholtz equation (HE):

is the same as  Schrödinger equation (SE) for point particle with 
mass m and energy U in a potential

Short wavelength stationary  EM  fields  ruled  by HE, correspond to 
semiclassical (            ) stationary solutions of SE,

Classical chaos develops complexity on arbitrary small scales of 
phase space. Quantum mechanics implies unobservability of  
phase-space features below Planck’s scale

Quantum (wave) chaos does not exist [Berry, Proc. Roy. Soc., 
A413, 183, 1987]

However, quantum (wave) systems which are chaotic in the 
semiclassical (ray) limit exhibit peculiar features
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Digression: Wave chaology
Berry-Voros-Shnirelman conjecture
• The averaged (over a number of  wavelengths) Wigner density W

of a ray-chaotic field should correspond (in the limit as lØ0 ) to 
plane waves with random-uniform wave-vector  directions through 
almost any point

[Voros, Ann. Inst. H. Poincare’ 24, 31, 1976; Berry, J. Phys. A10, 2083, 
1977]

• As a result, one gets for the (smoothed) spatial field correlation
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Full-wave simulations: correlation
Internal field (smoothed) spatial correlation
complies with Berry’s conjecture
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Full-wave simulations – Reflected field
Plain undulated surface (no dielectric topping) with a/l=9
•Floquet coefficients depend smoothly on incidence angle.



Full-wave simulations – Reflected field (cont’d)
Undulated surface with tapered dielectric topping
•Floquet coefficients depend smoothly on incidence angle if iff a/l <<1;
•Floquet coefficients depend wildly on incidence angle iff a/l >>1;

(a/l=9, n(0)=15)



Conclusions and open issues
New paradigm in  ray-chaotic boundary-value problem

•Both internal and external,
•Combined effect of both geometrical and constitutive effects.

[Castaldi et al., Phys. Rev. Lett., submitted 2002]

Ray-chaos hallmarks in the full-wave regime entail  
nontrivial EM response [Castaldi et al.,J. Opt. Soc. Am., 
submitted 2002].

Potential  applications (currently under consideration)
• Radar countermeasures, 
• Smart EM absorbers.

Open issues
• Characterize the deterministic/stochastic transition (work in 

progress, in collaboration with Prof. L.B. Felsen).
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