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Abstract
An efficient technique based on the extension of the Banded Matrix Iterative Approach
(BMIA) to a not canonical grid by using the Adaptive Integral Method (AIM) is presented
for the analysis of stacked patch antennas of large dimensions. The patches can have
arbitrary shape and orientation and are modeled by means of triangular elements.

INTRODUCTION

The analysis of large-scale complex patch antennas by using method of moments (MoM)
usually requires large computational resources in terms both of dynamic memory and
computation time. Especially for an optimization process, where many slightly different
structures have to be analysed, availability of an efficient numerical method is desirable.
Similar problems arise in a Monte–Carlo analysis of the scattering from large rough sur-
faces. In this kind of study the scattered field intensity is averaged over more of one
hundred of typical realizations of the assumed scenery built in conformity with its sta-
tistical behavior. Obviously, it is very important to minimize the computation time for
the analysis of each realization and several techniques have been developed for the fast
computation of deterministic profile scattering. These techniques are based on the modifi-
cation of the classical method of moments (MoM) to allow a fast evaluation of the reaction
integral and, when an iterative solver is used, a fast matrix–vector multiplication. Exam-
ples include the adaptive integral method (AIM) [1], the fast multipole method (FMM)
[2], the matrix decomposition algorithm (MDA) [3], and the banded matrix iterative ap-
proach/canonical grid method (BMIA/CAG) [4]. Specifically, the BMIA/CAG method is
one of the most efficient when applied to the studying of rough surfaces.

The aim of this paper is to show that the last method, when opportunely modified, can
be profitably employed for the analysis of large-scale stacked patch antennas. In particular,
the necessity to describe patches of arbitrary shape and size in a regular grid is considered
by introducing a set of auxiliary basis functions based on a multipole expansion as in the
AIM [1]. Furthermore, special attention has been addressed to the presence of a ground
plane, placed below the patches, which reduces the number of terms we need to evaluate.

In order to simplify the formulation, the antennas analysed in the following are sup-
posed characterized by a substrate of dielectric relative permittivity very close to unity,
similar to those usually employed by GSM systems having space and frequency diversity
and/or in a GPS system mounted on satellites. This hypothesis allows the analysis of
patches in free space by using in the procedure an expansion of the free space Green func-
tion. The method, however, can be easily extended to dielectric stratified structure with
a little effort when discrete complex image method (DCIM) is employed [5], at least when
substrates having low relative permittivity are employed.



FORMULATION

The general structure sketched in Fig. 1 can be considered a quasi–planar metallic structure
located over an infinite ground plane having a height profile z = f(x, y).

�

�

�

mm

mm

mm

mm

mm mm mm

mm

mm

mm

� � � � � � � � 	 
 � �

Fig. 1 – Geometry of the problem.

Let ~Js be the surface current density induced on it by an incident field ~Ei and ~Es the
electric scattered field. The latter can be computed from the surface currents by ~Es =
−jω ~A−∇φ, with the magnetic vector potential ~A and the scalar potential φ defined as

[
~A(~r)
φ(~r)

]
=

j

4π

∫∫

S

[
−jµ ~Js(~r ′)
∇ · ~Js(~r ′)/ωε

]
·G(~r, ~r ′) dS′ , (1)

where G(~r, ~r ′) = exp(−jkR)/R, and R = |~r − ~r ′|. By enforcing the boundary condi-
tion n̂ ×

(
~Ei + ~Es

)
= 0 on S, we can derive an integrodifferential equation for ~Js ob-

taining n̂× ~Ei
∣∣∣
S

= n̂×
(
jω ~A+∇φ

)∣∣∣
S

. The last expression together with equation (1)

represent the so–called electric field integral equation (EFIE). For numerical solution of
the pertinent integral equation the surface S is discretized into small triangular patches,
and the unknown current ~Js is expanded using a suitable set of basis functions ~jn(~r)
(e.g., Rao–Wilton–Glisson (RWG) basis functions defined by Rao et al. [6]). That is
~Js(~r) =

∑N
n=1 In

~jn(~r), where In are unknown coefficients. Then, a method of moments
is applied to obtain a linear system of equations, Z I = V. In classical BMIA the com-
putational efficiency is achieved defining a distance rd which separates two regions: a
near–interaction region and a weak–interaction region. Then, one can write the ma-
trix Z as superimposition of a strong matrix Zs and a weak–interaction matrix Zw (i.e.
Z = Zs + Zw). The elements of Zs are related to weighting and base functions having
distances dxy =

√
(x− x′)2 + (y − y′)2 < rd. In the weak–interaction region we consider

h = |z − z′| = |f(x, y)− f(x′, y′)| ¿ dxy. So we can approximate the Green’s function by
using M̃ terms of the relevant Taylor series with respect to the height h, resulting

G(dxy, h) '
M̃∑

m=0

am(dxy) exp(−jkdxy)h2m , (2)

where a0 = 1/dxy, a1 = −(1 + jkdxy)/2d3
xy, a2 = (3 + 3jkdxy − k2d2

xy)/8d
5
xy, . . . . As a

consequence, the weak–term of the eq. (1) can be written as

M̃∑

m=0

j

4π

∫∫

S

[
−jµ ~Js(x′, y′, z′)
∇ · ~Js(x′, y′, z′)/ωε

]
am(dxy) exp(−jkdxy)

[
z − z′]2m dS′ . (3)



Therefore, by assuming the Galerkin discretization scheme, each element of the weak–
interaction matrix Zw can be expressed as linear combination of four elements of the form

Zαi,j =
M∑

m=0

∫∫

S
Rm(z)ψαi (x, y, z)

∫∫

S
Am(x− x′, y − y′)Qm(z′)ψαj (x′, y′, z′) dS′ dS . (4)

where α = x, y, z, φ , ψαi is the pertinent base or weighting function and M = (M̃+1)2−1.
At this point, it is convenient to replace the original basis and weighting current

distribution multiplied by Pm(z) = Qm(z) or Pm(z) = Rm(z) with an approximately
equivalent set of pointlike currents. The two current distributions are equivalent in the
sense that they generate almost identical fields in the weak–interaction region. We choose
the pointlike current elements located at nodes of a regular Cartesian two–dimensional
grid, parallel to the x, y plane. Both basis and weighting functions are approximated as
linear combination of Dirac delta functions, thus

Pm(z)ψαn(x, y, z) '
L∑

i=0

Λα,mn,i δ(x− xi)δ(y − yi)δ(z − zc) , (5)

with (xi, yi) ∈ Cn, where Cn is the set of L+ 1 grid nodes closest to the center (xc, yc, zc)
of the basis or weghting function support.

However, differently from the classical AIM, since we require that pointlike current
elements are bound only to be belong to a regular Cartesian two–dimensional grid having
Ng nodes, we enforce the equality
∫∫

S
Pm(z)ψαn(x, y, z)(x− xc)m1(y − yc)m2dS =

L∑

i=0

Λα,mn,i (xi − xc)m1(yi − yc)m2 ,

for 0 ≤ m1,m2 ≤ L . (6)

By inserting (5) in eq. (4) we can easily recognize that for the weak–interaction matrix
we can write

Zw I =
M∑

m=0

∑

α=x,y,z,φ

HTα ΛRα,mAm ΛQα,mHα I , (7)

where Am = {Am(xi − xj , yi − yj)}, Hα joins the basis (weighting) functions to the un-

knowns vector I = {In} and ΛR,Qα,m =
{

Λα,mn,i
}

, where Pm(z) = Qm(z) or Pm(z) = Rm(z)
are considered.

It is worth noting that matrix Am is a block Toeplitz matrix, while matrices Hα and
ΛR,Qα,m are extremely sparse (few valued elements per row).

While the Zw matrix is a full matrix withO(N2) elements and usually can not be stored
for large–scale problems, we have now to store only O(4Ng) elements for each matrix Am,
and some others matrices that need the overall storage of O(4(L+ 1)Ng) elements, where
Ng is the number of nodes on the regular two–dimensional grid. Furthermore, when the
conjugate gradient (CG) method is used to solve the matrix equation Z I = V , the ZwI
product can be conveniently evaluated by performing, for each term m, first the product
ΛQα,mHα I (pre–multiplication), then the product Am · (ΛQα,mHα I) by means of two 2D–
FFTs, since Am is a block Toeplitz matrix. Finally, the product HTi R(m) · (Am ΛQα,mHα I)
can be performed (post–multiplication). The latter scheme allows to evaluate the ZwI
product by using O(Ng

[
8(2M̃ + 1) log(4Ng) + 6(M̃ + 1)2

]
) operations instead of O(N2).

When we consider the presence in the structure of a ground plane some simplifications
arise. As a matter of fact, by applying the image principle we locate image sources



symmetrically with respect to the ground plane, assumed on z = 0. This can be taken
into account direclty by the Hα matrices. However, since in eq. (4) the term Qm(z′) is
proportional to (z′)m−1−(b√m−1)2

, it is easy to see that when an even power of the source
position function z′ is considered the presence of an image source leads to annihilate the
contribution to the field given by the x and y components of the current density, and by
its divergence. In a similar way, contribution given by the z component is annihilated in
terms Qm(z′) having an odd power of z′.

NUMERICAL RESULTS

The convergence of the method has been tested by comparing the results obtained with
those given by a standard MoM. First, we have analysed the array sketched in Fig. 1 made
up of 6× 6 stacked patches. Fig. 2a shows the input impedance at the central element of
the array evaluated with both the standard MoM procedure and the proposed one. The
curves are almost indistinguishable. Fig. 2b shows that the proposed method is profitable,
when compared with the FMM, for the analysis of structures that require more than 4000
unknowns.
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Fig. 2 – (a) Real and imaginary part of the input impedance of the central element of the array
sketched in Fig. 1 (6777 unknowns, hmax/rd = 0.082); (b) Number of multiplications required for
each (Zs +Zw)I product by MoM, FFM and BMIA/AIM method versus the number of unknowns
(M̃ = 2).
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