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Deterministic Chaos in a Nuthell

o5%(z)

65(1) = 5%(0)exp(Az)

A>0, Lyapunov exponent
55%(0)

Exponential-in-time divergence of evolutions originating
from nearby initial states.




Chaos Paradigms

X, 1=V, (Xﬁﬂ) Logistic map;

i=0(y-x)

- Lorenz thermally-induced
Y= PpX — Y — X

J=P J < fluid convection;
=9 -

x4+ A + X3 — BCOS(Z‘) Duffing’s equation.



A Few Chaos Facts

*At any fixed precision, information on the initial
state 1s steadily lost. Measurements made on the
system do not allow to predict its far-future state.

Integrable systems (including all linear ones) can-
not display chaos (positive A);

Sufficiently many degrees of freedom required for
chaos (2 for autonomous systems).




Chaos in Electromagnetics, I

A short antenna (actually, a loop)

loaded by Chua’s chaotic circuit. e s

— circuit ) / tn=e o
[L.O. Chua, M. Komuro and T. i N \Q :
Matsumoto, The Double-Scroll F\_\
Family, IEEE Trans. CAS-33,
1073, 1986 s

T. Matsumoto, L.O. Chua and
a. Tokumasu, Double Scroll via
a two-Transistor Circuit, IEEE
Trans. CAS-33, 828, 1986]
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Chaos in Electromagnetics, 11

A variety of problems involving (dispersive) nonlinear constit-
utive properties =—> nonlinear coupling among a set of modes.

[see, €.g., N.B. Abraham, E. Arimondo, R.W. Boyd, Instability,
Dynamics and Chaos in Nonlinear Optical Systems, in Insta-
Bility and Chaos in Quantum Optics, N.B. Abraham, F.T.
Arecchi and L.A. Lugiato, Eds., NATO-ASI B177, Plenum
Press, NY, 1987]
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e.g., Ikeda’s optically pumped ring. it |
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[K. Ikeda, Opt. Comm., 30, 257, 1979
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Chaos in Electromagnetics, I11

Resonators involving elastically bound mirrors, where mechanical
and EM degrees of freedom are coupled by radiation-pressure
(everything else being linear).
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[V.Pierro and I.M Pinto, Radiation Pressure induced Chaos in
Multipendular Fabry Perot, Phys. Lett, A185, 14, 1994; 1bid.,
A193, 498, 1994.]



Chaos in Electromagnetics, IV

Boundary value problems featuring ray-chaos (exponential div-
ergence between near-co-incident rays). ..

Internal b.v.p.’s External b.v.p.’s

TD  =Re

3

Bunimovic PEC “stadium” resonator
3-disk PEC ““pinball” scatterer
[S.W. McDonald and A.N. Kauf-
man, “Wave Chaos in the Stad-
ium: Statistial Properties of Short-
Wave Solutions of the Helmholtz
Equation”, Phys. Rev. A37, 3067,

1988.]

[P. Gaspard and S.A. Rice, “Scatter-
ing from a Classical Chaotic Repel-

lor”, J. Chem. Phys., 90, 2225, 1989;
ibid., 2242; 1bid., 2255]



Chaos in Electromagnetics, 1V, cont.d

b

Internal b.v.p.’s External b.v.p.’s

...after 250 bounces ...50 incident raysw. different b

...where is nonlinearity ?

...1n the maps evolving successive impact points
[MV: Berry, Eur. J. Phys., 2, 91, 1981; P. Gaspard
And S.A. Rice, J. Chem. Phys. 90, 2242, 1989]



Why studying R-chaotic EM BVP’s

1. Because they provide a viable (1) route to understand
the properties of generic (and otherwise untractable)
complex /irregular b.v.p.’s - at least under suitable
circumstances (extreme diffusion limit);

2. Because they pose a fundamental issue of principle
about the hallmarks (if any) of ray - chaos in the short
but full-wave regime, where the diffraction limit forbids
the existence of structure at all scales below A.

3. Because some of their unique properties might open
the door to the design of new devices and new artificially-
engineered materials;




1.

Taming Ergodicity and Localization
In Complex/Irregular EM b.v.p.’s




Complex Scatterers

“...consider for example the RCS of a target such as a B-52 air-
craft at a frequency of 10GHz, where the target size exceeds 103
wavelengths in linear dimensions. The aspect-angle variation in
the RCS of such a target 1s extremely spiky, with changes of 10s
of dB possible for incidence angle changes of a few tenths of a
degree.” [E.K. Miller and T.K. Sarkar, in Frontiers in Electro-
magnetics, D.H. Werner and R. Mittra Eds, IEEE Press, 2000,

p. 972]

...Your new PC can run a 1000 x 1000 x 1000 node FDTD
or MAFIA simulation in a snap. Fine. So what ? ...




Complex vs. Complicated

Many (in fact most) EM boundary value problems of practical
interest are both complex and complicated

The CERN-LHC beam pipe Urban area propagation

()

Apache-helicopter RCS Stadium shaped PEC resonator

Structural complexity in the response shows up in systems with
(deceptively) simple geometrical and constitutive properties.




Complexity

[R.R. Parwani, Complexity, web-book available on line at
http://staff.science.nu.edu/~parwani/complexity]

Defining complexity 1is...a complex task !

Complexity means a butterfly flapping its wings in Jaipur
causing a wind storm in Jamaica

We shall adopt the following tentative operational definition:

Knowledge (description) of a complex system is not equiv-
alent to knowledge of its parts. Mutual interaction is crucial.
Reductionistic approaches do not work




Complex EM BVP’s — a Venn Chart

Complex b.v.p.’s

Dis-ordered
to Irregular

b.v.p.’s R-Chaotic

b.v.p.’s




STatistical ElectroMagnetics (STEM)

[T.H. Lehman, A Statistical Theory of Electromagnetics in Complex
Cavities, IN-493, Phillips Labs., Kirtland, 1993]

In many practical cases, a statistical characterization of the EM
field 1s appropriate and desirable, e.g. to ascertain

*whether the field at some critical spots might ever exceed
some critical level (shielding, EMI/EMC problems),

*whether the average field within a given area will reach
a specified level (broadcast coverage problems).

|

[t turns out that a for many EM b.v.p.’s involving complex envi-
ronments, a statistical description 1s the only meaningful one
(if not the only possible).




Ergodicity : The Random Plane Wave Model

Under extreme multiple-scattering assumptions, the field at any point
in a complex/irregular scenario can be thought of as a superposition of
a large number N of plane waves with uniformly distributed phases,
directions of arrival and polarizations (RPW ansatz).

Following an ergodic assumption, the field (spatial component) values
might be expected to be gaussian-distributed. This turns to be the case
even for N~ 102 waves, almost irrespective of the detailed distribution
of the amplitudes.

[A. Abdi, H. Hashemi, and S. Nader-Esfahani, “On the PDF of a Sum of
Random Vectors”, IEEE Trans. Comm., 48, 7, 2000]



Random Plane Waves, cont.d - Correlations

Under the RPW assumption, the (locally smoothed, tensor) spatial
field correlations take the form [B. Eckhardt, U. Dorr, U. Kuhl and

H.-J. Stockmann, “Correlations of Electromagnetic Fields in Chaotic
Cavities”, Europhys. Lett. 46, 134, 1999]:

fi 0 0
(EG+7/2)EE-F/2)(|EF)=| 0 f, O
0 0 f
3(siné siné—<&cosé siné —&cosé
| == — 3 5 523 3 ” =k
: 2( : : ) : [ ¢ j - =k

viz., loosely speaking, the field correlation distance is ~A.



Random Plane Waves, cont.d — Degrees of Freedom

At any fixed resolution level (set by roundoff and/or measurement
uncertainty) the field in a (compact) set D can be reconstructed (e.g.
by cardinal interpolation) from a finite number ~ "u_ (D) of samples
taken on a regular grid with spacing ~ A.

[O.M. Bucci and G. Franceschetti, “On the Degrees of Freedom of
Scattered Fields”, IEEE Trans. AP-37, 918, 1989]

*Under the RPW assumption, the above field samples will be gaussian
distributed , almost independent, and bounded (up to any prescribed
confidence level), so that at any fixed resolution level (...) the need-
ed field (component) samples may take only a finite number of distinct
values.



Random Plane Waves, cont.d - Coding

In the RPW assumption, all possible (distinct) fields in a compact set D
correspond to all finite-length words constructed using a finite alphabet.

*This allows to define a Shannon entropy, and to compute the probab-
ility of occurrence of any possible (distinct) field pattern in D.
[P.Corona, D. Cuomo, I.M. Pinto, “An Information Theoretic Description

of EM Fields in Complex Environments”, IEEE Trans. IM-36, 1020, 1987]



Random Plane Waves, cont.d - Credits

The random-plane-wave ansatz was formulated by Sir M.V. Berry
in connection with (internal) ray-chaotic b.v.p.’s, and is named after

him [M.V. Berry, “Regular and Irregular Semiclassical Wave functions”,
J. Phys. A10, 2083, 1977]

The RPW ansatz has been independently used by D. Hill, in his study
of reverberation enclosures [D. Hill, Trans. IEEE EMC-40, 209, 1998;
ibid., EMC-44, 95, 2002]



First Numerical Evidence in Favor
of Berry’s RPW Ansatz [1989]

PHYSICAL REVIEW A VOLUME 37, NUMBER 8 APRIT 15, 1938

Wave chaos in the stadium: Statistical properties
of short-wave solutions of the Helmholtz equaiion

Steven W. McDoenald™ and Allan M. Kaufman
Fhyvsiey Depariment and Liwrence Berkefey Loboratory, Tniversive uf Cafiforniq, Berkejry, Californis 94720
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Localization

In 1958 P.W. Anderson calculated the effects of per-
turbations (dis-order) on a 2D periodic lattice on the
eigenvalues/eigenfunctions of Schrodinger equation.
He showed that for a variety of dis-orders, the eigen-
functions become exponentially localized 1n the lat-
tice (Floquet picture destroyed), as an effect of the
interference from oddities-scattered waves.

[P.W. Anderson, “Absence of Diffusion in Certain
Random Lattices”, Phys. Rev. 109, 1492, 1958]




Localization: PBG waveguides

ibj

[A. Scherer, O. Painter, J. Vuckovic, M. Lonkar, T. Yoshie, “Photonic Crystals for
Confining, Guiding and Emitting Light”, IEEE Trans. NT-1, 4, 2002.]



Localization in Complex-Irregular Environments

[P. Pradhan and S. Sridhar, “Correlations due to Localization in

Quantum Eigenfunctions of Disordered Microwave Cavities”,
Phys. Rev. Lett., 85, 2360, 2000]

irregular-localized irregular-ergodic
(f=3.04 GHz) d" y vy (f=7.33 GHz)

chaotic (ergodic)

separable

(a,b,d) 44cm X 21.8 cm square pillbox resonator.
(a,b) 36 random-uniformly placed @ 1cm PEC circular tiles.
(¢) Sinai quarter billiard.




Localization in Complex-Chaotic Environments:
Scarred Eigenstates (in b.v.p.’s w. mixed ray kinematics)

A gallery of unstable . .. .
(or marginally-stable) Scar = anomalous eigenfunction intensity
closed stadium orbits concentration at the location of 1solated

unstable ray-orbits.

ap

< > First predicted by Heller [Phys. Rev. Lett., 53,1515,

»»»
¥ [a)

1984]; first observed by Sridhar [Phys. Rev. Lett., 67,
785, 1991] 1in a microwave pillbox resonator experiment.

Scar statistics:

[T.M. Ansonsen, E. Ott, Q. Chen and R.N. Oerter,
“Statistics of Wavefunction Scars”, Phys. Rev. ES1,
111, 1995]




Why studying R-chaotic EM BVP’s

1. Because they provide a viable (1) route to understand
the properties of generic (and otherwise untractable)
complex / irregular b.v.p.’s - at least under suitable
circumstances (extreme diffusion limit);

2. Because they pose a fundamental issue of principle
about the hallmarks (if any) of ray - chaos in the short
but full-wave regime, where the diffraction limit forbids
the existence of structure at all scales below A;

3. Because some of their unique properties might open
the door to the design of new devices and new artificially-
engineered materials.




2.
Chaos hallmarks (rpotopavela) in the
(short but full) wave regime




Quantum (Wave) Chaology

*Helmholtz equation
VE+K (2)E=0

is the same as Schrodinger equation (SE) for point particle with
mass m and energy U in a potential:

p 2m[U -V (z
k(z)z m[ . (z)]

*Short wavelength (4 — 0) stationary EM fields ruled by Helm-

holtz equation correspond to semiclassical (7 — () stationary
solutions of Schrodinger equation.

*Most of the relevant papers are written in a quantum-mechanical

perspective — although the main results do apply to all sorts of wave
phenomena.




Digression I - Historical

The statistical nature of (quantum-mechanical) wave-scattering by
(complex) many-body systems first shew up in nuclear ballistics .
[T. Ericson, Phys. Rev 5§, 430, 1960]

It was an early intuition by Ericson and Mayer that “...nuclear reaction
theory is equivalent to the theory of waveguides...”, in this respect .
[T. Ericson and T. Mayer-Kuckuck, Ann. Rev. Nucl. Sci., 16, 183, 1966]

Similar features are observed in ballistic microstructures, where a single-
electron wavefunction remains coherent across the whole system (meso-
scopic systems, quantum-dots) .

[P.A. Mello, Pramana J. Phys., 56, 425, 2001 ]




Quantum (Wave) Chaology explored using Microwaves

PHYSICA 2

ELSEVIER Physica E 9 (2001) 571-577 —_—
wwiw.elsevier.nllocate/physe

Microwave studies of chaotic billiards and disordered systems

Hans-Jiirgen Stockmann *, Michael Barth, Ulrich Dorr, Ulrich Kuhl, Hendrik Schanze

Fachbereich Physik, Philipps- Universitdt, Renthof 5, D-35032 Marburg, Germuny

Abstract

A review is given on our recent microwave results in chaotic systems with special emphasis on examples having a direct
relevance for real mesoscopic systems. We present tests of predictions by Simons and Altshuler on velocity distributions of
different types of spectral level dynamics, studies of transmission fluctuations through open billiards, and of the localization—
delocalization transition of wave functions in disordered systems. The review ends with a presentation of chaotic field
distributions in three-dimensional billiards. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 05.45.Mt; 42.25.Dd; 73.23.—-b

Keywaords: Chaotic billiards; Velocity correlations; Conductance fluctuations; Wave functions in disordered systems




R-Chaos Hallmarks in the

Asymptotic Distributions o
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Normalized spacings: s, = ( -k’ )/<Ak2>

RMT=

Poisson = integrable (no ray chaos);
" GOE=R-chaotic, time reversible;

GUE=R-chaotic, time irreversible;
Jnonreciprocal, e.g. ferrite, inset);

[M.L. Mehta, Random Matrices, Academic, NY, 1967]




Digression II -Wave Chaology meets Number Theory:
The Zeta Function Puzzle

-1 Riemann hypothesis (1859): the non-
gy | trivial zeros of {(s) lie on s = 1/2+it,
& = t € R has never been disproved, yet
> L neither proved. - 1
il L LC1/2+it) ) ’
Bernhard Riemann (1826-1866) : J\/\/\
S
S(s)= [Ja-p) "= High order (s) zeros fit GUE statistics.
p =primes If the zeros of {(s) were the eigenval-
= f(s) [[a-s/2) ues of some b.v.p., Riemann hypothesis

z={ s zeros would be proved.[Polya].



Why studying R-chaotic EM BVP’s

1. Because they provide a viable (1) route to understand
the properties of generic (and otherwise untractable)
complex / irregular b.v.p.’s - at least under suitable
circumstances (extreme diffusion limit);

2. Because they pose a fundamental issue of principle
about the hallmarks (if any) of ray - chaos in the short
but full-wave regime, where the diffraction limit forbids
the existence of structure at all scales below A;

3. Because some of their unique properties might open
the door to the design of new devices and new artificially-
engineered materials.




3.
New devices and (artificially engineered)
materials from R-chaotic b.v.p.’s




... The Bow-tie Solid-State Lasers...
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...Pulsed Reverberation Enclosures: a Movie...




..Smart Absorbers & Radar countermeasures
(next talk)...
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Italians: They do Speak Chaos !

PHY3CAL REVIEW E YOLUWE &1, HUMBER 4 AP Chaotic Scattering of Microwaves
Microwave study of quantum a-d&k scattering

Wentao Lo, Lomrza Viola, Kdsti Fance, Michal Rese, and 5. Scidhar Tsampikos Kottos!, Uzy Smilansky!, Joaquim Fortuny* anc Giuseppe Nestit
Dreperrtarent af Fhuges, Mortheestern Laiversiy, Sasen, Measzrohisets 02015

IReceved L6 Seplambet LR t Department of Physics of Complex Systems,
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dimensichal mickowave cavities, Two-, thiee-, and fout-dick afetings ate invastigated in detmil, The axpeti- The Weizmann Institute of Science, Rehovot 76100, Israel
mn=his, which ate able 1o pobe the sidtohat y Gi=eh ‘s fuhctich of the sydam, yizd both fiequahcizsahd widihs . X . i i
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PACS humbetle): 054301, 0545.4c, 0165 39, 5440, —=

Abstract

In this paper we analyze a recent experiment conducted in an anechoic cham-
ber, where the scattering of microwaves from an array of metallic cylinders
was measured. This is a system which displays chaotic scattering in the short
wave limit. The analysis of the experimental data is aimed at elucidating the
effects of the underlying chaos. We describe a robust numerical method which
provides the scattering matrix for any number of non overlapping reflecting
cylinders. We use this method to calculate the scattering from one, two and
three cylinders, and to compare the results in the numerical simulations with
those obtained in the experiment. Both simulations and measurements vali-

date the presented theory.



... Speaking of Chaos...
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Chuang Tsu’s Tale of Chaos (1525)
Ch’ing Dinasty roll.



	
	
	
	

