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Abstract

This paper is concerned with the dasscal problem of the Grean's function o an elementary source
embedded in a dielectric half-space. An asymptotic evaluation is proposed o the pertinent Sammerfeld's
integrals, which makes use of new canmical functions for the TM case. The final asymptotics gradually
blendsinto the non uriform ray solutionfar fromcritical ange of GO incidence. Numerical results prove the
accuracy of the formulation for both TE and, most remarkably, TM case.

INTRODUCTION
An acaurate asymptotic evaluation of the dyadic Green’s function for a semi-infinite dieledric medium is
useful in the framework of an integral equation anaysis of embedded dbjeds. Non-uniform asymptatic (i.e.,
ray) description of the problem were presented by various authors [1], [2]. The most common way is to
derive the asymptotics from the well known Sommerfeld spedral integral, by resorting to a sandard SDP
technique, which leals to a field representation in terms of spacewave and latera-wave contributions, the
latter asociated to an incidence angle greater than the
AL critical angle. The space-wave ray, which coincides at
€o the firgt asymptotic order with the Geometrical Optics
(GO) refleded fidd, emerges from a speaular paint, in
€1 accordance with the Snell’s law; the lateral wave (LW)
ray originates at point which is associated to the critical
angle of incidence propagates at grazing and next
leaves the surface to reach the observation point. When
the two points from which space and latera wave
originates merge together, bath types of waves exhibit a
transition and the simple non-uniform asymptotics fail s.
The asymptotic parameterization in the Sommerfed's
spedra plane is given in terms of branch-point and
saddle-paint coalescence The absencein literature of a
robust uniform asymptatics for treating this transition have motivates a further investigation. Indeed, while
the asymptotic solution uniformly valid everywhere is given for TE case in the classcd work of Bleistein
[3], the TM case is not yet fully exploited. The difficulty that arises from this latter case resides in the
presence of a Leaky-wave pole in an improper Riemann shed. This pole is never captured by the SDP
deformation for any observation point; however, its vicinity to the branch-point affeds the ordinary sadde-
point evaluation during the saddle-point/branch-point coalescence. This renders invalid, espedally for high
didedric oontrast, a @nventiona uniform asymptotics based on mapping saddle-point/branch-point
interactions onto canonical parabdic cylinder functions. In this paper, while treaing the TM case with the
use of anew canonicd function, also modifies the TE case with resped to the work of Bleinstein in order to
obtain an asymptotic representation which blends more gradually and clealy into the non uniform GO-plus-
|ateral-wave ray description [1].

D .
>

point source y
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FORMULATION
For the sake of simplicity, the formulation presented here is restricted to the @se of an observation point at
the dieledric interface However, the asymptotic strategy can be esily generaized to arbitrary observation
point. The geometry of the problem is presented in Fig. 1. The point sourceis placed at distance h from the
inteface in the denser medium. A local (X,y,z) coordinate system is introduced with its origin at the dipole
and its z-axis perpendicular to the lens interface is introduced; a spherical (r,8,¢) and a cylindricd (p,®,2)
coordinate systems are also defined. The verticd eedric and magnetic Hertz-Debye potentials can be written
in terms of Sommerfeld integrals
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inwhich kyy =k -k2 , ky =,/kZ-k2 , where k; = /e, ko and ko = w,\/eopt, are the wavenumber of

the didlectric medium. The subscript TE and TM denote TE and TM solution of the z-trasmission line
problem in the spectral domain [Felsen]. This solution depends for the type of source considered; by referring
for simplicity to an electric horizonta dipoles, we have
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where for the TE case the second equality has been obtained just multiplying and dividing by (K,, —K,;) .
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ASYMPTOTIC EVALUATION OF THE SOMERFELD INTEGRALS
By approximating the Hanke function in (1) with its expresgon for large value of its argument and wsng the
angular change of variable k, =k;sinw, with k, =k; cosw, the origina red axis contour of the k, planeis

mapped into the mntour Q = B— g - joo,7_2T + jooH. Theintegral isthen transformed into
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The w plane, shown in Fig. 2, exhibits a branch point singuarity on 8 = 6; (critical angl€), coming from
k,=ko intheradid spedral plane, whilethe branch point corresponding to k ,=k; disappeas, due to the

choice k, =k, cosw. The saddle point k ,= K 5 is transformed in the saddle point at w= 6, where 6 isthe

angle which individuates the observation point. In order to isolate asymptotic contributions, the original
path is deformed into a Stegoest Descent Path (SDP) through the sadd e point 6. The asymptotic evaluation
of this integral leads to the GO contribution. When 8 < 6., no branch-cut contributions are catured (Fig.
24a), whilefor 8> 6, (Fig. 2b) an additional integration around the branch cut must be included, which leads
to the lateral wave mntribution. For 8 far away from 6; (kpS far from ko) the GO contribution and the

lateral wave contribution are digtinct. In this case anon-uniform asymptotic expresson can be easily
obtained by expanding the anplitude function close to the criticd points. This approximation fails for a
branch paint close to a saddle paint, i.e. for observation aspeds close to the criticd angle, thus imposing a
more sophisticated asymptotics for describing the trangtion field.

By using the above mntour deformation, the original integral in (3) can be split as
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Fig. 2 Integration paths in the spectral angular plane. (a) Angle of incidence smaller than the critical

angle; (b) angle of incidence greater than the critical angle. The improper pole 6, occurs only for TM
case and islocated on the bottom Riemann sheet associated to both branch-cuts,



where f, (w) = coswv/sinw Izn (klsina)),U(x) is a stepped unit function (equal to zero for x < 0 and
equal to anefor x> 0), and |- =1 Fop O I r, Where I'op denotes the SDP path and I’y is the path around the

branch cut (seeFig. 2). By performing the substitution cos(w—@) =1- js?, which maps the saddle point in
s=0 and the branch point 6. in s, = /- j2sin[(6, —8)/2], theintegralsin (4) becomes
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ds
yb g A Re(s) and Y isthe mapping o I in the s-plane (seeFig. 3). In
¢ particular, for M=l p , Y=Yopp isaongthered axis of the
S 0 Im(s) R s-plane, andfor M=y, y=y, circumventsthe branch cut at
g ysdp - ) & . Thisbranch is sich that the phase of s-s. varies from

—ttand 1tin the top Riemann shed. Depending on the ase
Fig. 3 Complex s-plane and relevant contours g or TM, a different canonicd mapping is chosen, as
described next.

TE case. Theintegrand is mapped into the foll owing form:

Fe(s)=A+Bys-s +C(s—s)y/s—s (6)

where the constants A, B and C are found in such away to match the integrand at the critical points of the s
domain. To clarify the above, let us consider the @ntributions to F(s) which comes from kZO and kn in
(24) and let us denote them by Frgo(s) and Frei(S), respedively. Sincein the first mapping in the w-plane the
branch corresponding to kn =0 disappeas, Fe1(S) does not present any branch point. Thus, the onstant A is

found by the value obtained by Frg1(s) at the saddle paint; i.e. A=Fg,(0). The mnstant B and C are found
indeed by matching the value of Freo(S) at bath the saddie point and the branch point; i.e., by solving the

system M (o) (Freo(S)/y/S—5.) = B andFgo(s) = By/— s, +C(=5,)y/= % . Using (6) in (5)

leads to a solution written in terms of the foll owing canonical functions

a,(%.Q.y)=[(s-5) €™ds ; N=12.32, y=y,,.¥, @
y
which can be rewritten in terms of ordinary one-parameter cylinder parabdic functions for bath the ontours

Y=Yedp AN Y=Y .

TM case. The mapping in (6) does not work for the TM case, because of the presence of an additional pole
on the bottom Riemann shee (RS) of the s-plane which is located at s, =./- j2$in[(9,D —9)/2] with

0, = sin"lﬁ/ & +l). Although this pole cainot be never captured by the previous contour deformation, its

presence may affed the asymptotic when the branch point is close to the saddle point, espedally for high
dieledric contrast. For thisreason, a different mapping is suggested:

_ AﬂS-SC — 5
FTM(S)~\/S—SC+\/Sp—SC +B\/S SC(S Sc) (8)

where the constant A, and B are found in such a way to match the integrand by matching the value of Fy (S)
at bath the saddle point and the branch point; i.e., by solving the system:
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A=lim /S, S Fm(9)/ys—s, andFp, (s) = = +\/S° — +B(-s,)y-S.
C p C
The term which multiplies B implies within (5) the same spedal function as that in (7) (with n=3/2), while
for theterm multiplying A , a new canonical function neals, which is defined as
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The numerical evaluation of this function, which is not more complicated than conventional cylinder
parabdic functions, has been investigated and will be discussed duringthe sesson.

NUMERICAL EXAMPLES

Numerical examples are shown in Fig. 4, which are rdevant to a medium with rdative permittivity &, = 4
(critical angle of incidence 6; = 30 degrees). The numeric integration of (1) (reference arve, dashed line) is
compared with the saddle-point GO-ray approximation (dotted line) and the uniform asymptotic evaluation
(continuous line) for h = 4\o, where Aq is the freespace wavelength. Also shown are the arves of Igpp
(dashed-dotted line) and I (dashed-double-dotted line) separately. The good agreement shown in this case
(which is remarkable for the TM case) has been dso found for various stuations of source position and
didedric contrast.

Magnitude Magnitude
0.1 0.2

018 r ISDP+ lB
Reference —-- P
0.16 F |GO approx. ... e

0.09

0.08

0.07 0.14 |

0.06 0.12 |

0.05 017

ISDP + lB
Reference —--
GO approx. -

0.08 [

0.04

0.03 \10.06F

spp T'T

g ==

0.02 0.04 [

1
1
&
H N
0.01 H ~o 0.02
i

frmeas commamerere om0t b0 855 4255

0 " . . . Ly 0 " . . .
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Oangle (degrees) Oangle (degrees)

Fig. 4. Green'sfunction of the patential at the interface. (a) TE case (b) TM case

CONCLUDING REMARKS

A uniform asymptotic evaluation or the potential Green’s function for a semi-infinite didedric medium as
been presented. A new canonicd function have been introduced for the TM case, which acoounts for the
presence of a pole on theimproper Riemann shed. In deriving the asymptotics, each spedral amplitude has
been approximated by a rational function, which preserve the exact value of the spedrum at bath saddle-
point and branch-points. The final outcome is a representation which graduall y blends into the non-uniform
ray-field structure out of the transition region were the lateral wave merges into the spacewave.
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