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Abstract
An efficient technique to reconstruct the field radiated by an antenna in the far-field

region from the knowledge of its nonuniformly spaced plane-polar samples is developed in
this work. The Singular Value Decomposition method is applied to evaluate the uniformly
distributed samples, whose positions are fixed by a nonredundant sampling representation
of the field. Then the near-field data required by the classical plane-rectangular near-field–
far-field transformation technique are efficiently evaluated via the Optimal Sampling
Interpolation algorithm. As demonstrated by numerical tests, the reconstruction process is
accurate and stable with respect to errors affecting the nonuniform samples.

1.  INTRODUCTION
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Fig. 1 -  Geometry of the problem.

An efficient near-field–far-field (NF–FF)
transformation technique with plane-polar
scanning [1] has been recently developed by
considering the antenna under test (AUT) as
enclosed in an oblate ellipsoid, which is a
source modelling particularly suitable to deal
with quasi-planar antennas. Such a technique
is based on the theoretical results concerning
the nonredundant sampling representations of
the radiated electromagnetic (EM) fields [2]
and allows to lower in a significant way the
number of needed NF data, without losing the
efficiency of previous approaches. Unfortu-
nately, due to an inaccurate control of the
positioning systems, it may be unpractical to
get uniformly spaced NF measurements. On
the other hand, the samples position can be accurately read by optical devices. Accordingly,
the development of an efficient algorithm, which allows an accurate and stable field recon-
struction from the knowledge of the irregularly spaced data (see Fig. 1), becomes relevant.
Formulas present in literature for the direct reconstruction from nonuniformly spaced
samples are valid only for particular sampling points arrangements, are cumbersome, not
user friendly and unstable. Two-dimensional algorithms for recovering the uniform
samples from those irregularly spaced on planar, cylindrical or far-field spherical surfaces
have been proposed in [3,4]. These algorithms use an iterative technique which converges
only if it is possible to build a biunique correspondence between the nonuniform samples
and a lattice of regularly spaced ones, by associating at each uniform sampling point the
nearest nonuniform one. With reference to a one-dimensional circular domain, this
limitation has been overcome in [5] by developing an approach based on the use of the
Singular Value Decomposition (SVD) technique [6]. Moreover, it allows one to take
advantage of data redundancy for increasing the algorithm stability with respect to
unavoidable errors affecting the samples [5].

2.  SUMMARY OF PREVIOUS RESULTS
In this section we report the key results [1] concerning a nonredundant sampling

representation of the EM field radiated by an antenna enclosed in an oblate ellipsoid S



having major and minor semi-axes equal to a and b (see Fig.1). The field is observed on a
NF plane described by radial lines and rings. For each of these curves, denoted by an
analytical parameterization r = r x( ) , the “reduced electric field” F x( ) = E x( ) exp jg (x)( ),
g(x) being a phase function to be determined, can be closely approximated by a spatially
bandlimited function. For electrically large antennas, the bandlimitation error becomes
negligible as the bandwidth exceeds a critical value Wx  [2]. Therefore such an error can be
effectively controlled by choosing a bandwidth equal to c' Wx , c' > 1 being an excess
bandwidth factor. When considering a radial line, by adopting 

  
Wx = bl ' /2p  (b  being the

wavenumber and l '  the length of the intersection curve   C '  between the meridian plane
passing through the observation point P and  S), we get [1]:
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where E(◊|◊) denotes the elliptic integral of second kind, e = f / a  is the eccentricity of   C ' , f
is its focal distance and u = r1 - r2( ) / 2f  , v = r1 + r2( ) / 2a  are the elliptic coordinates, r1,2
being the distances from P to the foci of   C ' . Moreover, sin-1 u = J•  , J•  being the polar
angle of the asymptote to the hyperbola through P. When the observation curve is a ring, it
is convenient to use the azimuthal angle j  as parameter [1,2] and the corresponding
bandwidth Wj x( ) = ba sinJ• x( ) .

By taking into account these results, the field at any observation point P(x,j) on the
radial line fixed by j  can be evaluated via the corresponding Optimal Sampling
Interpolation (OSI) expansion [1]:

F x,j( ) = F xn,j( ) WN x - xn( ) DN'' x - xn( )
n=n0 -p+1

n0 +p

Â (2)

The uniform samples F(xn,j) on the radial line passing through P can be given by:

F xn,j( ) = F xn,jm,n( ) WMn
j - jm,n( ) DMn" j - jm,n( )

m=m0 -q+1

m0 +q

Â (3)

where F(xn,jm,n ) are the uniformly spaced samples on the ring fixed by xn . In (2), (3)
n0 = Int(x / Dx), m0 = Int(j / Djn )  and 2p, 2q are the number of retained samples along x
and j. Moreover, DL"(◊) and W L(◊) are the Dirichlet and Tschebyscheff Sampling (TS)
functions, respectively [1,2], where L is equal to N = N"-N'  or Mn = Mn" - Mn' . At last,

xn = nDx = 2np (2N"+1) N"= Int(c N' ) + 1   ; N' = Int(c' Wx ) + 1 (4)

jm,n = mDjn = 2mp (2Mn" + 1) Mn" = Int(cMn' ) + 1   ; Mn' = Int(c*Wjn
) + 1 (5)

Wjn
= Wj xn( )  ; c* = c* x( ) = 1 + c' -1( ) sinJ x( )[ ]-2/3

(6)

3.  NF–FF TRANSFORMATION FROM NONUNIFORMLY SPACED SAMPES
Let us suppose that, apart the sample at the center of the scanning plane, the

nonuniformly distributed samples lie on rings not regularly spaced (see Fig. 1). This is a
realistic hypothesis in a plane-polar facility. Accordingly, the field at the observation point
P is obtained as follows. For each ring, SVD is used for evaluating the uniformly spaced
samples from the nonuniform ones. When the uniform samples on the rings are so
determined, the OSI expansion is employed to determine the intermediate samples on the
radial line through P. Since the intermediate samples are nonuniformly distributed on the
considered radial line, the field at P is found in analogous way by recovering the regularly
spaced intermediate samples again via SVD.

In particular, given a sequence of K ≥ 2M"+1 nonuniform sampling points on a ring at x,



the reduced field at each nonuniform sampling point (x, hk )  can be determined by
applying the OSI expansion (3). The corresponding system can be rewritten in the
following matrix form:

A x = b (7)

where b  is the sequence F(x, hk ) of the known nonuniform samples, x  is the sequence of
the unknown uniformly distributed samples F(x,jm ) , and A is the K ¥ (2M"+1)  matrix,
whose elements are given by the weight functions in the considered OSI expansion:

akm = WM hk - jm( ) DM'' hk - jm( )  (8)

Obviously, for a fixed row k, these elements are equal to zero if the index m is out of the
range [m0(x, hk ) - q + 1, m0(x, hk ) + q]. A solution, which is the best approximation in the
least squares sense of the overdetermined linear system (7), is obtained by using the SVD
algorithm. When the uniformly spaced samples on the rings are so determined, the OSI
expansion (3) is employed to determine the intermediate samples on the radial line passing
through P. These intermediate samples result nonuniformly distributed on the considered
curve, so that the previous step must be repeated to find the field at P. Obviously, in this last
step, the OSI expansion (2) must be considered instead of (3).

In order to minimize the computational effort, since the aim is to reconstruct the data
needed for the classical plane-rectangular NF–FF transformation, it is convenient to evaluate
the plane-polar samples at the uniformly distributed points (xn,jm ), where the jm values
are those corresponding to the outer ring. In such a way, although we reconstruct NF data
redundant along j , the number of SVD on the radial lines is minimized. Once these
uniformly distributed plane-polar samples have been determined, the plane-rectangular data
can be evaluated by using expansions (2) and (3), this latter properly modified to take into
account the redundancy in j.

4.  NUMERICAL RESULTS
Numerical tests assessing the effectiveness of the approach are reported in the following.

The simulation refers to a uniform planar circular array having radius equal to 19.8 l , l
being the wavelength. Its elements, radially and azimuthally spaced of 0.6 l , are elementary
Huygens sources linearly polarized along the y axis. Accordingly, an ellipsoidal source
modelling with 2a = 40 l  and 2b = 5 l  has been used. The measurement plane is 22 l  far
away from the antenna center and the samples lie in a circular zone of radius ª 71 l .

Figure 2 shows a representative reconstruction example of the NF y-component (the
most significant one) on the radial line at j = 90∞ . As it can be seen, there is a very good
agreement between the exact curve and the reconstructed one. To assess quantitatively the
algorithm performances, the maximum and mean-square reconstruction errors (normalized
to the field maximum on the plane) have been evaluated. To save space, only the plot of the
maximum error is reported in Fig. 3. As expected, the error decreases up to very low values
on increasing the oversampling factor and/or the number of retained samples. The mean-
square error curves run about 10 dB lower than the corresponding ones reported in Fig. 3.
The algorithm stability has been investigated by adding random errors to the exact samples.
These errors simulate a background noise (bounded to Da dB in amplitude and with
arbitrary phase) and an uncertainty on the field samples of ±Dar dB in amplitude and ±D F
degrees in phase. As shown in Fig. 4, the reconstruction process is stable. In any case, as
previously stated, the stability can be improved by increasing the number of data.

The proposed algorithm has been applied to efficiently recover the plane-rectangular
data, needed for the NF–FF transformation. The corresponding E-plane pattern, recon-
structed from the recovered plane-rectangular data lying in a 100l ¥ 100l  square grid, is
shown (crosses) in Fig. 5. The pattern reconstructed from the exact plane-rectangular field
samples lying in the same grid is also reported as reference (solid line) in the same figure.
As can be seen from this comparison, also the FF reconstruction is very accurate, thus
assessing the effectiveness of the developed technique.
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Fig.2 - Amplitude of the NF y-component Fig.3 - Normalized maximum error.
on the radial line at j = 90∞ .  Solid
line: exact. Crosses: interpolated.
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Fig.4 - Amplitude of the NF y-component at Fig.5 - FF pattern in the E-plane.  Solid li-
j = 90∞ .  Solid  line: exact.   Crosses: ne: reference.  Crosses: reconstruct-

 interpolated from error affected data. ed from nonuniform NF data.
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