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Abstract
The present work illustrates a formulation to evaluate spectral integral that represent the array
Green’s  function (AGF) of large finite planar phased array for observation points close to the
array contour. The procedure is based on the AGF representation in terms of a double spectral
integral, whose numerical evaluation takes advantage of the exponential attenuation on a proper
integration path. Thanks to this convergence properties, the final algorithm is numerically
accurate, stable and more efficient with respect to the individual element summation.

INTRODUCTION
The array Green's function (AGF) represents the basic constituent for the full-wave description of
electromagnetic radiation from rectangular periodic arrays and scattering from periodic surfaces. In
modeling the performance of such structures, one of the main objectives is the reduction of the
often prohibitive numerical effort that accompanies the full-wave analysis based on integral
equation, which is structured around the ordinary individual element Green's function. For a
periodic array, this AGF is composed of the sum over the individual dipole contributions. Under
certain assumptions, the integral equation can be restructured around the active Green's function,
which is the field collectively radiated by an array of elementary dipoles. A recent series of papers
have investigated about the description of the AGF in terms of propagating and evanescent Floquet
Waves (FWs) together with corresponding FW-modulated diffracted fields, which arise from FW
scattering at the array edges and vertexes [1], [2]. The above mentioned formulation, being based
on an asymptotic evaluation of the constituent radiation integrals, fails when observing too close to
edge and vertexes. The present work is intended to illustrate a complementary strategy for treating
observation point also close to the array contour, as implicated by a full-wave scheme. The same
scheme, which imposes the solution of an integral equation, needs in most of cases the evaluation
of the field at the array plane, i.e., where the boundary conditions are imposed. Consequently, the
formulation will be carried out for this case, which is however the most useful and, at the same
time, critical from numerical point of view. The procedure is based on the AGF representation in
terms of double spectral integral, whose numerical evaluation takes advantage by the exponential
attenuation on a proper integration path. Thanks to this convergence properties the final algorithm
is numerically accurate and more efficient with respect to the individual element summation.
Although example are presented here for the case of free-space Green's function, the same
procedure can be modify to account for stratified media. A sample calculation is included to
demonstrate the accuracy of this numerical method.

FORMULATION
A rectangular planar array linearly phased and uniformly illuminated in amplitude can be
rigorously decomposed in terms of planar angular sector arrays [2]. Thus, it is not restrictive to start
from a sectoral periodic array of linearly phased dipoles located in the z1, z2-plane (Fig.1 a). The
inter-element spatial period along z1 and z2 is given by d1 and d2, and the inter-element phase
gradient by γ1 and γ2, respectively. All dipoles are oriented along the unit vector p̂ (a bold
character denotes a vector quantity, and a caret ∧ denotes a unit vector). A time dependence
exp(jωt), is understood and suppressed. In  [1]  it is shown that  the  electromagnetic  vector field
at the  observation  point yyzzzz ˆˆˆ 2211 ++=r  can be represented in the spectral ),(

21 zz kk form of
the free space Green's function



Figura 1 a) Geometry of the planar sectoral array of parallel dipoles oriented along a direction p̂ . b) Geometry of the
actual and the complementary array; this latter is used for extending the procedure for z1>0, z2>0 .
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12 zz kkk >− on the top

Riemann sheet of the complex 
izk -plane (see [2]). The spectral dyadic Green's function
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21 zz kkG is that associated to the single dipole source; for the sake of simplicity, we will refer to a

free-space environments, but the formulation is valid also for stratified media, providing to include

the proper Green’s function in the spectral treatment. For free-space )IkkkkG zz kk−−= 2)(/(),(
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which exhibit q- and p-indexed poles in the ),(
21 zz kk  plane, located at

,/2 11,11
dqkk qzz πγ +== ,/2 22,22

dpkk pzz πγ +==  ....2,1,0, ±±=pq  As seen in [2], these
functions arise from the collective radiation of all dipoles on a sectoral array.
As mentioned before, it is particular important to investigate about the field at y=0, because of
potential use of the AGF in integral equations. In this case, (1) can be restructured into a sequence
of complex integral as
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with  22

2zb kkk −±= . In (3), the integrand function contains poles at pzz kk ,22
=  due to )(

22 zkB .

In (4) the integrand function has the branch-point singularities at bz kk ±=
1

 and poles at

qzz kk ,11
= due to )(

11 zkB  (see (2)). Both 
21

, zz kk integration circumvent the poles in clockwise sense
[2]. We note that the residues of these poles in both variables represent the FW associated to the
infinite array. The location of branch points and branch cuts, with respect to the real-axis
integration path in the 

1zk -plane, is found by introducing small fictitious losses ( −=ℑ 0}{km )



which are eventually removed [1]. For the sake of convenience, we start from the case z1<0 and
next we extend the procedure to z1>0.
A. Region: z1<0. First, the integration (4) in the spectral variable 

1zk  ("internal" integration), is
numerically evaluated. Then, the outcome is used in the subsequent integration (3), ("external
integration") in the spectral variable 

2z
k . The "internal" integration is carried out by deforming the

original integration path along the branch cut }{}{
1 bz keke −ℜ=ℜ  (Fig.2 a b). Note that the

vanishing of the integration contribution along C1, C2 imposes z1<0 , which is the reason of the
initial assumption. Furthermore, due to the clockwise indentation along the poles, no residue has to
be included during the contour deformation. This latter fact may be understood by observing that
when the observation point is located outside the array region, the description of the field not
include FWs. Using the contour parity, "internal" integration, deformed along the branch cut, can
be reduced to an integral from 0 to ∞ with the change of variable ξjkkk bz +−=

1
, thus leading to
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The numerical integration can be easily performed for z1<0; thanks to the exponential attenuation,

the 
1z

k  integration can be practically truncated at 1/2 zλξ ≅  with negligible errors. The external

integration (3) along the 
2zk real axes is carried out by subdividing the axes into intervals with

amplitude ∆k (Fig. 2 c), which contains or less pzk ,2
poles; in this way the electric field can be

separated as )('')(')( rErErE += , respectively. For intervals without poles, the integrand
function is continuous and the integration can be performed by ordinary routine for numerical
integration. In intervals which contains poles the integrand function is regularized by adding and
subtracting  from )(

22 zkB the function )(/ ,2 22 pzz kkdj − , where j/d 2 is the residues at the poles pzk ,2
.

The integrand regularized function is then expressed by means of Taylor expansion around pzk ,2
-
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separated in three terms considering the Taylor expansion of )()( ,222 pzzz kkk −+≅ baD  around

pzk ,2
-poles, where ),( ,2 pzkDa = kkkkk pzpz ∆∆−−∆+= /)]2/()2/([ ,, 22

DDb . Note that the terms
coming from the integration of the three above contributions can be evaluated in a closed form.
B. Region: z1>0, z2<0. In analogy with the first case, this range can be covered by interchanging
the order of integration. This means in practice to perform the interchange of subscripts 1 with 2 in
(3)-(5). Note that the range z1<0, z2<0 may be treated by using the one or the other order of
sequential integration, the most convenient choice being dictated by the ratio z1/ z2.

C. Region: z1>0, z2>0. For this case we define a complementary dipole array (Fig.1 b) which
summed to the original sectoral array forms an infinite periodic array. For this infinite array, the
field (denoted by FWE ) can be obtained in terms of Floquet Wave expansion as [1]
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with 2
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2
21 pzqzypq kkkk −−= . From the linearity of the solution, it is evident that FWEEE =+*

where *E is the field of the complementary array. Thus *EEE FW -= which holds for all value of
(z1,z2). Using this solution, for z1>0, z2>0, we reconstruct the remaining portion of space not
covered by the formulation, provided to know *E . To obtained *E we can considered the
complementary array (see Fig.1 b) as composed by three sectoral array localized for (z1<0, z2>0),
(z1<0, z2<0) and  (z1>0, z2<0), respectively.



Figure 2. Topology of the 
1zk plane; the poles qzk ,1

are located below the original integration path; branch points occur

at ;22
21 zbz kkkk −±=±= (a) 22
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1 bz kmkm ±ℑ<>ℑ c)Possible subdivision of the 

2zk external spectral

variable into intervals which contain or less FW poles.

With the same procedure illustrated previously, the field *E can be obtained as a sum of the three
contribution radiated by the three sectoral array that form the complementary array.

NUMERICAL RESULTS AND CONCLUSION
Fig. 3. shows numerical results for the electric field on the array plane for a rectilinear scan range
shown in the inset. The array is composed by 50x50 dipoles that are oriented along z1 with
periodicity equal to 0.8λ and phase 021 == γγ . The result are compared with a element by element
summation (dotted line) of individual dipole contribution. Note that for calculating the above plots,
the external integration has been performed from (-3k, 3k), which means three times the visible
region. The internal (

1zk )-integration (5) is performed from zero to 2λ / z1. The procedure
presented here for equi-amplitude excitation, can be generalized for tapered illumination as well as
for stratified media.

Figure 3. Comparison between element by element solution (dotted line) with numerical technique (dashed line). Z1
component of the electric field for the rectilinear scan shown in the inset.
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