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Abstract

Recently, a hybrid (high frequency)-(method of moments) technique has been proposed for the
analysis of large periodic phased arrays. This technique is based on a Floquet wave diffraction
theory for the representation of the radiation from and scattering by finite periodic structures.
Through an appropriate ’fringe’ integral equation the edge-induced current is interpreted as
associated to wave diffraction at the boundaries of the array, thus allowing an efficient rep-
resentation in terms of a few array-domain basis functions. In this paper, this technique is
applied to the analysis of microstrip arrays. In particular focus will be given to the effects
associated to the excitation of surface waves and leaky waves in the finite periodic array.

INTRODUCTION

Periodic arrays have been deeply investigated for a series of interesting electromagnetic
properties. Practical applications of periodic structures in electromagnetic engineering are
phased arrays, reflect-arrays, frequency selective surfaces (FSS), polarizers, photonic bandgap
(PBG) materials. The estimation of array parameters is usually based on the hypothesis of
infinite periodic structure [1]; this allows the expansion of the fields and currents in terms of
Floquet waves (FW’s), thus reducing the analysis to that of a single cell of periodicity. Nev-
ertheless, the infinite array assumption cannot predict the current perturbation associated to
the finite extent of the actual structure [2]. On the other hand, a rigorous analysis of the finite
array based on an element-by-element method of moments (MoM) becomes computationally
prohibitive as the size of the array increases. Recently, a method [3] has been proposed for the
electromagnetic analysis of large periodic arrays. In this method, the infinite array Floquet-type
current is augmented by an edge-induced current which may be rigorously estimated through
the numerical solution of an appropriate ’fringe’ integral equation. The fringe current is ex-
panded in terms of a few array-domain basis functions, whose structure is derived from the
high-frequency ray-diffraction representation of the field radiated by the array. The theoretical
basis of the method is given in a series of recent papers (see [4] and references therein), which
generalize to finite arrays the FW representation of infinite periodic arrays.

In [5], the method was applied to the analysis of arrays in layered media, by referring to
a prototypical case of a finite periodic array of printed dipoles on a grounded dielectric slab.
Here, with reference to the same structure, the phenomena associated with the excitation of
guided waves is investigated with emphasis to the description of the perturbation which the
periodic loading exerts on the of the guided wave propagation constants of the bare slab. A
modification of the algorithm in [5] is adopted to properly describe the relevant phenomenol-
ogy. Numerical results will show the effectiveness of the method.
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Fig. 1. Finite rectangular periodic array of conducting printed dipoles on an infinite dielectric grounded slab
illuminated by an incident plane wave. The dipoles are oriented alongx axis, with length denoted byL
and width byW , and are arranged on a rectangular grid, with spatial periodicity denoted byd x anddy.
The number of dipoles isNx, Ny alongx, y directions, respectively. The dielectric slab is characterized by
thicknessd and relative permittivity"r.

FORMULATION

The geometry investigated in this paper is a finite rectangular periodic array of printed
dipoles, as shown and described in Fig. 1. The array is illuminated by an incident plane wave,
with electric fieldEinc(r) = Eoe

�jkinc�r wherer is the position vector andkinc is the wave vec-
tor of the incident plane wave. Anej!t time dependence is assumed and suppressed throughout
the paper.

An unknown electric current distributionJ is assumed on the surface of the printed dipoles.
Imposing the vanishing of the electric field at the perfectly conducting dipoles yields the fol-
lowing electric field integral equation (EFIE)

�AE
s
tan(J) = ��AE

imp
tan ; (1)

whereEs
tan(J) andEimp

tan are the tangential components of the electric field scattered by the
unknown currentJ and of the impressed electric field, respectively. In (1),A denotes the
region occupied by the conducting dipoles and�A is the characteristic function ofA [3].

As detailed in [3][5], the EFIE in (1) can be decomposed into two coupled integral equations
(IE’s)
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The first IE is the one associated with the infinite periodic array problem. The second IE is the
fringe integral equation (FIE), whose unknown is the fringe currentJd = J � �AJ1 and the
forcing termEf = E

s
tan[(�1 � �A)J1] represents the electric field scattered by the external

periodic array, complementary to the actual one [3]. The current of the actual finite array is
expressed as the sum of the PO current�AJ1 (the infinite array current windowed on the finite
array region) and the fringe currentJd.

INTEGRAL EQUATIONS SOLUTION

The solution procedure is developed in two subsequent steps. First, the infinite periodic
array IE (2a) is solved using a conventional MoM approach [1]. Next, we solve the FIE (2b)
through an hybrid asymptotic-MoM algorithm.

The currentJ
1

of the infinite periodic array respects Floquet conditions. Consequently the
solution of the infinite periodic array problem is reduced to that of a single periodic cell, with



a negligible numerical effort. By applying a Galerkin procedure, the IE (2a) is converted into
a linear system[Z]

1
[I]
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1
, where the matrix elements are in terms of a double infinite

series of Floquet harmonics.
The second step is the numerical solution of the FIE (2b). First, we note that the prob-

lem associated to the FIE, is a finite periodic array with an aperiodic excitation. By applying
the truncated FW diffraction theory [4], the forcing term can be asymptotically expressed in
terms of two kind of contributions: 1) FW-induced diffracted waves and 2) FW-induced guided
waves, excited at the edges and vertices of the array, i.e.,
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whereEd;e=v

h denotes the FW-induced edge/vertex diffracted wave electric field, andE
GW;e=v
i

represents the edge/vertex excited surface wave (SW) or leaky wave (LW) electric field. The
truncation functionsU d=GW;e

h=i
bound the domain of the edge waves at the shadow boundaries

arising from the end-points of each edge. The analytical expressions of the various terms in-
volved in (3) can be found in [4]. In the expansion (3), LW’s can be neglected, since their
contributions rapidly decay away from the array border in this kind of configuration. The edge
diffracted waves and SW’s supported by the array are found by the generalized Fermat prin-
ciple. The connection between the truncated FW’s and the edge diffracted waves or SW’s is
established via phase-matching along the array edges, according to the following relationships

k
FW � ^̀= k

d;e
h � ^̀ k

FW � ^̀= k
SW;e
i � ^̀ (4)

wherekFW is the FW wavevector,kd;eh andkSW;e
i are the diffracted-wave and SW wavevector,

respectively, and̀̂ is the unit vector along the array edge.
On the basis of the physical description gained by the high-frequency representation (3) of

the FIE forcing term, the unknown fringe currentJd is expanded in terms of array-domain
basis functions, associated to diffracted waves and to guided waves, as
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X

h
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h +
X

i

biF
GW
i (5)

whereah andbi are unknown coefficients to be determined. Each basis function include the
edge contribution plus two end-point vertex contributions, which ensure the uniform continuity
to the current. The edge diffracted-wave currents asymptotically propagates with the speed of
light and decay like1=�3=2 (where� is the distance from the edge), since are associated to
slope-type space wave fields.

The edge-excited guided-wave currents decay as1=�0. In order to determine the exact
wavenumber of the guided-wave currents, the loading effect due to the presence of the peri-
odic array of dipoles must be properly taken into account by solving the homogeneous integral
equation. Various techniques have proposed in literature, based on rigorous (integral equations,
transverse resonance methods) or approximate (Bloch wave analysis, transmission line analy-
sis) methods. As done in [6], the algorithm adopted here is based on the solution of a resonance
equation, obtained by imposing the matrix determinant of the infinite periodic array problem
det[Z]

1
to be zero. The eigenvalues (i.e., the propagation wavenumbers)k� = � � j� are

obtained from the roots of the equation, with the constraint imposed by the generalized Fermat
principle condition (4).

After the propagation wavenumbers are determined, the FIE is solved with a MoM scheme.
Testing the field continuity with proper weight functions leads to a small-size linear system,
whose solution provides the coefficientsah andbi of the expansion (5). It is worth noting that



Fig. 2. (Left) Amplitude of the current on the central row of dipoles. (Right) Far-zone scattered electric field.
Continuous line: hybrid asymptotic-MoM; dashed line: element-by-element MoM; dotted line: infinite peri-
odic array approximation.

the number of basis functions in (5) is completely independent of the array size, since they are
associated to the global diffraction mechanism at the array border.

To prove the effectiveness and the accuracy of the method, a numerical example is provided
in Fig. 2. Results refer to a25 � 25 array of printed dipoles (L = 0:6 mm,W = 0:1 mm)
with periodicitydx = dy = 0:8 mm. The substrate has relative dielectric constant"r = 10:2
and thicknessd = 0:1905 mm. The array is excited by a plane wave coming from broadside
direction with electric field polarized along the dipoles. The operating frequency isf = 7
GHz. Fig. 2 shows the amplitude of the current on the central row of dipoles and the far-zone
scattered electric field. Additional numerical results will be shown during the oral presentation.
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