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Abstract 

 
This work develops some recursive circuit models for a simple but efficient description 
of the electromagnetic features of fractal-shaped antennas whose geometrical layout is 
based on the Sierpinski triangle topology. In particular, two classes of models are 
studied, the ‘esoskopic’ ones, that characterise the input impedance and reflection 
coefficients through a multiport equivalent network only at external access points, and 
the ‘endoskopic’ ones, that can furnish an equivalent circuit-level description of the 
whole geometrical layout. 
 
INTRODUCTION 
 

It has been widely shown that the autosimilarity properties of the fractal geometries can 
be successfully applied to the project of multiband antennas [1]. In particular, some 
devices based on the Sierpinski triangle topology have a log-periodic behaviour as far as 
both the input parameters and the radiation diagrams are concerned [2]. 
In this work we aim at developing recursive circuit models for an efficient description 
of the electromagnetic (EM) features of the fractal structure (in particular the frequency 
dependence of the input reflection coefficient and of the input impedance). The 
recursive topology is analogous to the intrinsic nature of the generation process of the 
fractal structure, that is based on the action of a particular Iterated Function System 
(IFS), i.e., a feedback system whose output relevant to a given operating step becomes 
the input relevant to the following step [3].  
 
FORMULATION 
 

A- Esoskopic models 
 

In the ‘esoskopic’ modelization, the ‘Pre-Fractal’ (PF) structure, at every finite step 
n∈N of the iterative generation process, is characterised by means of an analogy with a 
Multiport Network (MN). For the specific case of the triangular Sierpinski topology 
(see Fig. 1), in Fig. 2 is depicted the n-th order iteration of the generation process, 
consisting in the construction of the (n+1)-order PF, represented by the impedance MN 
matrix Z(n+1), by using three replicas of the n-order PF, all with impedance2 MN matrix 
Z(n), in two different versions that use as constitutive building-blocks 2-port unbalanced 
networks and 3-port balanced networks, respectively. 
The model is completely defined by the parameters Z(0), that is the starting point matrix, 
and f, that is the matrix function that represents the iteration procedure, i.e.: 
                                                 
1 This work was financed by the European Commission through FET project IST-2001-33055. 
2 For a m-port network the constitutive relation is ZI=V, where Z is the m×m impedance matrix, I and V 
are the m×1 port current and voltage matrices, respectively. In particular, the j-th diagonal element of Z 
represents the input impedance at the j-th port when the other ports are at a zero current state. 
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For instance, in the 2-port case the iterative function f  has the following form:  
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If we introduce the matrix function f(n) that directly furnishes the n-th order PF Z(n) from 
the starting point Z(0), i.e. ( )

( )( ) ( )0 n
nf Z Z= , the fractal object is ‘reached’ by taking the 

limit ( )
( )( ) ( )

( )( )0 0lim nn
f Z f Z∞ →∞

= . 

The classical Sierpinski triangular topology (Fig. 1b) is obtained by taking as starting 
point Z(0) of the iterative procedure given by Eq. (2) the MN of a Symmetric Triangle 
(ST) that we assume composed by bipoles of impedance 0ζ  (see Fig. 3): 
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              ,                                                (3) 

and by letting the interconnection bipole3 ζ=0.  In such case, we can show that: 
( )

( ) ( ) ( )n
st st st5 / 3 n

nZ f Z Z= = ⋅                ,                                (4) 

i.e. the  structure of a ST network is identically replicated except for the scaling factor 
5/3; therefore, its inverse 3/5 can be assumed as the renormalization factor in the 
iterative process even for a generic starting point matrix; therefore, we shall use, as 
constitutive IFS, the function ( )( ) ( )( )3/ 5n nf Z f Z= ⋅  instead of the non-normalized 

IFS given by Eq. (2), that would furnish diverging impedance values for n→∞. 
By applying the Caccioppoli-Banach theorem, it can be shown that f  has contractive 
features with fixed-point tsZ ; i.e. a high-order PF object, even if composed by non-

symmetrical elementary blocks ( ( )0
tsZ Z≠ ), presents, from an external view-point, a 

behaviour quantitatively analogous to a ST structure: ( )
ts

nZ Zα→ ⋅  for n→∞ (where α 
is a constant depending on Z(0)): see Fig. 4. 

 

B- Endoskopic models 
 

The ‘endoskopic’ modelization is directly obtained by associating a linear, permanent, 
bipole to every link of the graph Γn representing the topology of the n-th order 
Sierpinski gasket PF4. The iterative composition procedure is the following one: 
Initial Step: the 0-th order PF Network (PFN) is a simple triangle whose vertices 
{ 0

0ν , 1
0ν , 2

0ν } are enumerated in base-3 as {‘03’, ‘13’,‘23’}. The  3×3 adjacency matrix is: 
0 1 1

(0) [0] 1 0 1
1 1 0

A A
   ≡ =      

                                                       (5) 

                                                 
3 Alternative significant models can be obtained by assuming ζ=ζ0 (Sierpinkij ‘gasket’ topology, see 
Fig.1a), or, more in general, ζ=ξ⋅ζ0 , with 0≤ξ≤1. 
4 For the ‘gasket’ topology (Fig. 1a), Γn has Vn vertices and Ln links, with: Vn=3n+1, Ln=(3n+1-1)⋅3/2; 
instead for the classical Sierpinski triangle (Fig. 1b) we have: Vn=3⋅(3n-(3n-1)/2), Ln=3n+1. 



Analogously, if we assume identical values 0ζ  for the link impedances, the 3×3 
admittance matrix5, with respect to an external ground vertex Gν , is: 

( )
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1(0) [0] 1 2 10
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− −
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   ≡ = ⋅      
                                          (6) 

Iterative Step: the n-th order  PFN is obtained by replacing each k-vertex 1
k
nν −  of the (n–

1)-th order PFN (k=0,1,..,3n–1) with a triangle { ,0k
nν , ,1k

nν , ,2k
nν }; if 1

k
nν − is enumerated by 

means of a base-3 string with n digits, i.e.: 0 1 1
1 , ,...k n

nν κ κ κ −
−  ≡   , its ‘sons’ of the n-th 

order  PFN shall be mutually distinguished by an additional base-3 digit, i.e.:  
, 0 1 1, ,... ,   , 0,1, 2k l n

n l lν κ κ κ − ≡ =                                    (7) 

From an alternative point of view, the n-th order graph Γn can be obtained by replicating 
and mutually connecting three (n–1)-th order graphs 0

1,n−Γ 1 2
1 1,n n− −Γ Γ  (see Fig. 1a); 

therefore the 3n+1×3n+1 adiacence matrix ( )nA  is composed by a triple diagonal block 
composition of the lower order 3n×3n matrix ( 1)nA − , that takes into account the internal 
connections of the single (n–1)-th order sub-regions, and a suitable interconnection 
matrix V[n], that takes into account the three links that connect different subregions (e.g. 
links 0 1, ,n nλ λ  2

nλ  in Fig. 1a for the 0→1 step): 
3
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(δ is the Kronecker symbol). 
The iterated composition is analogous for the admittance matrix: 
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where ζ is the impedance associated to the interconnection links (see note 3). 
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5 As is well known: Ykk=sum of the admittances relevant to the links converging to the k-th vertex; Ykh= 
admittance relevant to the link between the h-th and the k-th vertices. The k-th diagonal element of the 
inverse matrix Y–1 represent the input impedance of the port realized between the k-th vertex and the 
external ground vertex νG (with all other ports left open, see note 2), that can model the physical situation 
of the fractal antenna fed by means of an external power source (e.g. coaxial cable) connected at the k-th 
vertex of the planar layout. 
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Fig. 2 - The n-th order iteration of the esoskopic modelizations with 2-port unbalanced networks (up) and 
with 3-port balanced networks (down). 

1b) ‘gasket’ 
 

In this variant 0
1,n−Γ  

1 2
1 1,n n− −Γ Γ  of the (n-1)-th 

order PF are mutually 
connected by means of 
additional interconnection 
links 0 1 2, ,n n nλ λ λ . 

1a) ‘classical’ triangle 
 

 The n-th order PF is obtained 
by 3 ‘replicas’ 0

1,n−Γ  
1 2

1 1,n n− −Γ Γ  of the (n-1)-th 
order PF, that are directly 
connected by superimposing 
neighbouring vertices. 
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0Γ  

 2
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Fig. 1: The Sierpinski topologies under analysis. Example of the 0→1 step of the iterative construction 
procedure for the classical triangular shape (1a) and the gasket-shaped variant (1b). 
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Fig. 3 - The symmetric triangular inner 
composition of the ‘starting’ 0-th order 2-

port network ( )0
stZ Z=  for the Sierpinski 

triangular topologies. 
 

Fig. 4 - n-th order MN ratios ( ) ( )
22 11/n nz z , ( ) ( )

12 11/n nz z  and 
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, ζ=0; for high n 

the ratios tend to the typical values of the ST network, 
i.e. 1,  0.5 and 0.5, respectively. 
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