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Abstract
This paper presents a formulation for the Green's function of an electric dipole exciting a slot printed between
two different homogeneous media and its relevant asymptotic solution uniformly valid in any space points. Our
formulation is based on the representation of a continuous spectrum of modes which has poles at the solution of
the dispersion equation, i.e., at the wavenumbers of the leaky guided modes.

INTRODUCTION
In [1] the magnetic current excited by an electric dipole on a slot printed between two different homogeneous
media has been derived in analytical form under not restrictive assumption of small slot width in terms of a
wavelength. In this paper we continue the investigation on this topic providing a ray description of the field in the
denser medium. Although general concerns about Green's function of open waveguiding structures have been
addressed by other authors in a more general framework [2][3], the investigation presented here assumes
importance becouse of the closed form expressions which simplify the understanding of the physical mechanisms.

Fig. 1 Geometry and reference system for an infinite slot excited by an electric dipole. The slot is etched between etched
in an infinite ground plane between two different half spaces with dielectric constant  (z>0) and   (z<0); we assume� �r2 r1

� �r2 r1>

MAGNETIC CURRENTS
The geometry, presented in Fig. 1 and consists of an infinite oriented slot which is printed on an infinite groundx-
plane between two homogeneous dielectric half-spaces of permittivities and with� � � �r2 r1 r2 r1 (z>0),   (z<0),  >
assumed for convenience The cross section  of the slot is uniform in  and small in terms of a wavelength. The. w xs

structure is excited by a -oriented electric dipole of the same length of the slot width placed at the origine ofy w , s

the reference system. In addition,  and  are the distances of the observation point from  and from the origin,�! r x
respectively;  is the angle that the observation direction forms with the positive x axis. � The closed form
expression for the slot magnetic currents derived in [1], is summarized here:m(x,y) 
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and  are the free-space propagation constant and characteristic impedance, respectively; fork , k k  0 i 0 r
 �� �~ l
i=1,2 . J     are the propagation constants in the two media In (3) is the Bessel function of zero order and is the� /

�

² ³2

Hankel function of zero order and second kind.

UNIFORM ASYMPTOTIC FIELD
Since the radiation essentially occurs in the denser medium, the attention  will be focused on the potential in
medium 2. The x-oriented electric vector potential, associated to the equivalent magnetic currents is

    v(x') d ' = e dkF 2  (4)2
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�
� and the factor 2 comes for the application of the image

principle (note that for simplicity, we use here a definition of the potential without multiplication for the
permittivity). From the potential The remaining of this paper will be, it is straightforward to obtain the field  .
concerned with the asymptotic approximation of F . Indeed, this asymptotic treatment provides the basic physical2

insight for the comprehension of the vector field mechanisms. Treatment of the vector field can be derived via
analytical differentiation.
After asymptotically evaluating the Hankel function in (4) for large values of its argument, the rectilinear spectrum
plane is transformed in the angular spectrum by the change of variable k , k =k cos  ,x
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where  is the angle that the observation vector forms with the positive  axis and C is the contour� x
 !c �BÁ �Á Á b �B Á À� �  which maps into the angular spectral domain the real axis of the plane  The spectralkx

angular plane is depicted in Fig 1. The phase of the integrand exhibits a saddle point at = , a branch point  atÀ � �

� �b 1 2 LW 2 2
1 1 LW

x=cos (k /k ) =cos ( /k ). kc cand a pole at   The branch point due to the square root at  in the�

rectilinear spectral plane (mapped at points 0 and  in the angular plane) has disappeared owing to the angular�

transformation used, which automatically solves the ambiguity of defining it as  Note that thelk k   k sin .� �
2
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log-type singularity at 0 and  still remains; these latter are not however involved in the following asymptotic�

treatment, as well as the other non-physical poles, which are not depicted in Fig. 1.
 To perform the asymptotic evaluation of the integral on the original contour C, we deform this contour
onto the steepest descent path (SDP) through the saddle point . The SDP equation in the  plane is defined by�=� �

Re , Im <0.   !  !cos( with cos( In this deformation � � � � �c ³ ~ � c ³ either the leaky wave pole or the log-typeLW

branch cut at may be captured depending on the position of the observer. Three different situations may be�b 
defined, which are represented in Fig. 1a,1b,1c, respectively.  When  > Fig 1a) neither � � � �b LW b,    ( nor are
captured during the contour deformation; in this case the total field is reconstructed by the sole SDP integration.
For  < Fig 1b) the branch point� � �b b    ( is captured, thus requiring an additional integration around the branch-cut.
For  < ( is captured in the contour deformation, thus leading in addition to the SDP and   � � �sb LWFig 1c) the pole 
to the branch cut integrations, the pole residue contribution. The boundary between the situation of Figure 1b and
1c occurs when the SDP crosses the pole, that is when Re cos( which, defining  ( !� � � �3> c ³ ~ �sb LW =Re )��

LW
and = (  implies  1 Eventually, the potential F  can be expressed as� � � � �
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  F   (6)2=  !I + I ( )+ I  U( )  sdp LW sb lat b< c c� � � �

where  is the unit step function ( =1 for >0 =0 for <0) which accounts for the existence domain ofU(x) U(x) x U(x) x
the various contributions as described in Fig.s 1a,b,c. In accordance with the non-uniform ray description in [2],
the mathematical definition and the corresponding physical meaning of the various contributions is



i)   SDP integral space wave contribution ( FI  = )sdp ¦ ¦
space

ii)  integral around the log-branch cut at lateral wave contribution ( F )I = lat b� ¦ ¦
lat

iii) residue at  leaky wave contribution ( FI  =  )LW LW� ¦ ¦
LW

In (6), the unit step functions  identifies the existence region of the leaky wave inside a shadow< c( )� �sb

boundary cone  In the same way, the existence function ( ) defines a shadow boundary cone (SBC)� �= . U  sb � �b c

at =  which bounds the existence region of the lateral wave.� �b

Actually, in all the practical configurations we have investigated, the lateral wave contribution has systematically
been found negligible due to prevalence of the space-wave contribution. Thus, the corresponding uniform
asymptotics will not be presented in this paper.

(a)                                              (b)                                                   (c)
Fig. 1. Angular spectral plane. The original contour C=( j , 0, , +j ) is deformed into the SDP through the saddlec B B� �

point . Branch points (fig. b and c) and leaky wave pole (fig. c) are captured in the contour deformation. L-type ranch� �

point at maps the square-root branch cuts at k  in the k -plane . Other log-type branch cuts at   and 0 occur, that� �b 1 x b

correspond to the log-type branch cuts at k  and k  in the k -plane, respectively. The continuous line paths are on the top1 x�

Rieman sheet (RS) associated with every branch cuts. The long dashed line paths are on top RS of the square-root type
branch cut at  and on bottom RS of the log-type branch cut at . Short dashed line paths are on bottom RS of the� �b b

square-root type branch cut at  and on top RS of the log-type branch cut at . Dotted line are on bottom RS of both� �b b

type of branch cuts at  .�b

In (3), the leaky wave contribution is obtained from the residue of   in (2) asf( )�
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wavespeed of the ambient medium, and along a direction which forms an angle with respect to the  axis.�
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The last step in the uniform asymptotic evaluation is the analytical approximation of the integral along the SDP.
The asymptotic evaluation is performed via the Van der Waerden (VdW) method [4]  and the final result can be
expressed as
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where is the complex argument analytical continuation of the transition function of the Uniform Theory ofF( )  �

Diffraction (UTD) [5].

NUMERICAL EXAMPLE AND CONCLUSION
The first set of curves in Fig. (2) check the accuracy of the asymptotic with respect to a reference solution obtained by
numerical space domain integration of (6) in [2] (dots) In this figure, the normalized field potential is presented  at r=3. �0

versus the scan angle for slots width and dielectrics =1 and =11.7. The curve relevant to the  =90 , w =3 10  � �
o 4
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leaky wave contribution alone is also presented (dash-dotted line), which is truncated at the shadow boundary. The



continuity of the total potential across the shadow boundary is guaranteed by the space wave (short dashed line). The sum
of the LW and the SW uniformly recovers the reference solution. In the zone where the leaky wave exists one can observe
that the total field presents amplitude oscillations due to the interference between leaky and space wave. A maximum of
the total potential occurs at the first in-phase summation of this two contributions beyond the shadow boundary.

(a) (b)                                                                               
Fig. 2 Electric potential F in medium 2 at a distance r =3  as a function of the scan angle for a slot with w =3 10�

c
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and for permitivities =1 and =11.7. Comparison of reference curve (direct integration, dots) ,  Leaky wave ( LW,� �r1 r2 (a) 
dash-dotted line) and space wave (dashed line) .  Radial scans at different distances.(b)

To conclude a rigorous pole saddle point uniform asymptotics has been carried out starting from the continuous
spectrum representation for the slot's Green's function solution. It is found that the conical leaky-wave is
exponentially attenuated along radial scans in its existence region, and therefore disappears in the far zone. The
directive pattern is then constructed by the sole space wave contribution, whose directive property are explained by
the vicinity of the leaky wave pole to the visible portion of the space-wave spectrum. The validity and accuracy of
the asymptotics has been verified by comparison with independent numerical integration, for observation points up
to distance  0.5 , where  (n=1,2) is the wavelength pertinent to the medium n=1,2.� �n n
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