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Abstract 

The clinical necrosis of living tissues by means of high-temperature implants to be 
heated through electromagnetic induction is theoretically studied. Non-linear and non-
stationary phenomena relevant to the action of the temperature-regulation system and 
to the cellular death process, as like as the alteration of the local electromagnetic 
properties due to the high temperature elevation are taken into account, by means of an 
interlaced solution procedure for the electromagnetic problem and for the thermal one.  
The model is validated through comparison with experimental clinical data. 
 
I-INTRODUCTION  
High-Temperature Hyperthermia (HTH) has its roots in the ancient medical practice of 
cauterization; nevertheless, from a scientific and rational view-point it represents a 
recent technique, that is nowadays widely used in cerebral surgery, in oncologic therapy 
(for deep-seated neoplastic nuclei), in orthopaedics. The most efficient way to realize 
HTH is the introduction into the target tissue of thermal metallic probes to be heated by 
means of electromagnetic (EM) induction; in fact, since no “mechanical” connection 
with the external sources is necessary, the sessions can be repeated without multiple 
insertion-removal operation and so minimizing infection risks. Moreover, the EM 
induction permits to obtain a more efficient temperature control of the probes avoiding 
the generation of spurious cysts [1].  
It is important to accurately determine the amplitude of the necrosis core in the target 
region around the implants and its growing trend at each time of the therapeutic session, 
in order to optimise the duration of the treatment with respect to the temperature or the 
power level of the implants. From a theoretical point of view, it is necessary to study the 
thermal propagation problem inside the living tissue, on the ground of a Thermal 
Transfer Equation (TTE) whose conductivity coefficient and convective exchange 
parameter have the following properties:  first, as a consequence of the local thermo-
control processes, they must be (non-linearly) dependent on the temperature [2]; second, 
they must be dependent also on the physiologic status of the tissue, which is represented 
by a point-wise “necrosis level” field and by the corresponding space-time evolution 
equation (that shall correctly represent the irreversibility of the thermal death 
phenomenon) to be solved in conjunction with the TTE. Moreover, during the treatment 
simulation, for a correct evaluation of the EM excitation of the implants it is necessary 
to continuously adjust the EM parameters (e.g. the complex electric permittivity) in the 
tissue region close to the implants according to the variation of the local temperature 
and of the physiological status (e.g. the occurrence of the necrosis phenomenon alters 
the water and saline contents of the tissue). 
II-FORMULATION 
In order to furnish a quantitative description of the necrosis phenomenon in a portion of 
living tissue subjected to HTH we introduce the space-time dependent field ν 
representing the necrosis level in the range between 0 (non-necrotic wealthy status) and 



1 (fully-necrotized status), whose evolution is described by means of the following 
equation (Bio-Necrotic Equation, BNE):  

( ) ( )( ) ( )
( ) ,,

, ,d

r tr t

T r t T r r t T
rt t

η νν η
τ

∞
∞

− −  ∂ ∂= ⋅   ∂ ∂ rr

r r r
r                      (1) 

equipped with  the initial condition ( ), 0 0rν =
r

 relevant to time t=0; Cη∞ ∞∈ ¡ is a 
compact function approximating the Heaviside unit-step function. As one can see from 
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; the irreversibility of such necrosis phenomenon is correctly taken into account: in 
fact, as the temperature lowers at the end of the session, the presence of the term 
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t
∂ <∂ forbids any decrease of the necrosis level. Since the 

necrosis field ν is interdependent with the temperature field T, one has to solve Eq. (1) 
together with the Fourier-Laplace TTE: 
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where χ  is the product of the mass density times the specific heat, K is the thermal 
conductivity and Q represents the heat sources. The living tissue is represented as the 
superposition of two isotropic coexisting continua, the solid molecular continuum and 
the liquid haematic continuum, i.e. the micro capillary system [2]; therefore, the thermal 
conductivity can be expressed as the sum of two contributes: 
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where mK  is the conductivity of the molecular part, whilst pK  is the conductivity of the 
haematic part, that is assumed to be proportional to the specific blood flow density Wp:  
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where ( )rp
r

0Ω  is the micro-capillary flow density for 0pTT =  (temperature of the arterial 

blood), β ( )r
r , λ and ψ are experimental best-fitting coefficients.  

The additional convective thermal exchange flow between the molecular medium and 
the haematic medium, due to blood motion, [2] is represented as follows: 
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The physiological metabolism has to be considered as a positive source term: 
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where ΦM gives the non-pathological temperature-dependent metabolic heat for ν=0. 
Moreover, it has to be considered the direct loss effect inside the living tissue due to the 
EM implant excitation, i.e. the source term ( ),EMQ r t

r
for Br V∈r

, see section II.1 
In conclusion, in Eq. (8) we have Q = Qc + QM + QEM .  
Finally, proper boundary conditions [1] have to be imposed on the boundary of the 
implant volume VI: 
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where  ΠI (t)  and TI (t) are the implant regulation functions relevant to the power-
control phase ∆tP (switch-on, switch off intervals) and to the temperature-control phase 
∆tT (stabilized regime at the Curie-point), respectively; n

r  is the outward normal unit 
vector. Additional boundary conditions must be imposed in order to consider border 
effects; e.g. in the presence of a surrounding medium at temperature eT  we let [2]:  
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where Σ  is the external boundary of the body and eh  is a proper thermal exchange 
coefficient. Finally, the following continuity condition on temperature and heat flow 
must be assumed on inner discontinuity surfaces gS  [2]: 
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where apex `+' and `-' represent left and right limits along the normal direction n
r

. 
II.1 The electromagnetic problem 
From a dynamic point of view, it is an experimental evidence that thermal and necrotic 
transients (10-1–101 s) are much slower than EM ones; therefore, once fixed a suitable 
time discretization grid {tn}n∈N for the TTE and the BNE, at a given time tn the EM 
induced power can be evaluated on the basis of the Poynting theorem by means of the 
following expression:  
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where ( ) ( ), ; ,  , ;n nE r t H r tω ω
r rr r , represent the electric field and the magnetic field in the 

frequency domain, respectively; ω is the (angular) frequency of the excitation current 
sources; the ‘additional’ presence of time tn in the ω-domain EM field argument takes 
into account the slow-varying alteration of the EM properties of the medium due to the 
simultaneous evolution of the temperature and of the necrosis level1: in fact, in VB the 
complex electric permittivity ε is significantly dependent both on T and ν, whereas in VI 
the complex magnetic permeability µ can meaningfully depend on T, as a consequence 
of the transition phenomena between paramagnetic and ferromagnetic status; 1i = + − , 
p(t) is the slow-varying power level modulation controlled by the operator during the 
clinical session (switch-on/regime/switch-off).  
Starting by the ω-domain Maxwell equations ( ( ) ( ), ,  ,e mJ r J rω ω

r rr r are the electric and 
magnetic sources which model the external EM power generator), 

( )
( )

( )( ) ( )
( ) ( )( ) ( )

( )
( )

1

1 1

, , ; , ;, ; ;

, ; , , , , ; , , ; ;

n nn m

n n n n e

r T r t H r tE r t J r
i

H r t r T r t r t E r t J r

µ ω ωω ω
ω

ω ε ν ω ω ω

−

− −

    − −
 ∇ × = +   
        

rr rr r rr r
r r rr r r r r r       (11) 

we decompose the EM field in the superposition of an incident part plus a scattered part, 
i.e.  i i s s,  ,  ,  E H E H E H     = +     

r r r r r r
; the first one is equivalent to the radiation that the 

same source system should induce in free-space, 

                                                 
1 By virtue of the previous dynamic considerations we can consider the T and ν distributions relevant to 
the anticipated time tn–1 instead of the current time tn; in such way an iterative interlaced procedure for the 
solution of the EM problem in conjunction with the TTE-BNE system is obtained. 
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and then obtainable una tantum on the ground of the dyadic Green functions, i.e.: 

( )
( )

( )
( )

i

i , ;

; ;

; ;

e m
E E e

e m
H H mr r

G GE r J r
dr

G GH r J r
ω

ω ω

ω ω
•

′

    ′
  ′=   
  ′       

∫∫∫
r r

r rr r rr rr r   ;                        (13) 

the second one is due to the presence of the body (ε≠ε0 ∀rr ∈ VB∪VI ; µ≠µ0 ∀rr ∈ VI): 
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Analogously to the solution relevant to free-space given by Eq. (13) we can obtain the 
following integral equation (whose numerical solution can be efficiently performed by 
means of the Moment Method through an associated algebraic system [3,4]), where the 
inhomogeneities of ε and µ play the role of field sources:  
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III-RESULTS 
The model is validated through the comparison of numerical simulations, relevant to a 
2D liver tissue geometry whereinto 4 thermal needles are inserted, with experimental 
data relevant to oncologic clinical sessions.  
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 ρν   
Fig. 1 (UP) Temperature and necrosis expansion in a muscle region 
with 4 implanted needles; plots from left to right are relevant to 
crescent times t=100s, 400s, 700s, 1100s; regime temperature 
TI(t)≡105°C  after the switch-on transient ∆tP=[0s,100s] 
Fig. 2 (LEFT): Comparison between experimental measured* and 
simulated necrosis expansions ρν  (around a single implant) vs. 
time t. 
* Experimental data from clinical session were furnished by Prof. Riccardo 
Maceratini and Dr. Marcello Caratozzolo of the "IV Clinica Chirurgica-
Facoltà di Medicina e Chirurgia" , La Sapienza  University  of Rome. 


