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Abstract
In this work the problem of electromagnetic wave scattering by a perfectly conducting
wedge in uniform tranglating motion is treated on the ground of the Frame Hopping
Method, by means of a plane-wave spectra representation approach: the solution is found
both through an exact analytical procedure and through the application of two different
numerical techniques that can be used for solving diffraction problems by moving objects
with arbitrary shape.

[-INTRODUCTION

The solution of dectromagnetic (EM) diffraction problems by scattering objects in uniform
trandating motion can be obtaned on the ground of the covariance properties of the
electrodynamic 4-tensors. In fact the expressons of the EM fidd, as messured by
obsarvers in different inertid reference frames in reldive motion, can be interdaed by
means of the rdatvidic Lorentz Transformaion formulae. On the ground of such
trandformations it is possble to esablish the Frame Hopping Method [1], that was
pioneered by A. Eingein in the foundation work of the Specid Reativity Theory [2] for
the 1D problem of EM reflection by a trandating mirror. The magjor drawback of the FHM
for application-oriented problems is that the rdativisic covariance transdformations become
rather cumbersome for a generic EM field when expressed in terms of the usud 3vector
notation. On the other hand, in the case of an EM Plane-Wave (PW) and, by virtue of
linearity, of a PW-expandable EM fidd it is possble to express the rdativigtic
transformation formulae in terms of Smple dteration rules for wave parameters, see [3/4].
Therefore, two smplification techniques can be developed: the PW Local Approximation
(PWLA) and the PW Integral Expansion (PWIE). In the first case [1], once the scattering
problem is solved in the co-moving frame through the customary motionless gpproach, the
EM fidd is gpproximated by means of a sngle plane-wave term for every far-fidd location
condgdered; then the Lorentz trandformation to the laboratory frame are performed by
operating on such dngle plane-wave terms through the parameter dteration rules. In the
second case [3/4], the solution in the co-moving frame has to be found in term of a PW
integral representation, so that, by virtue of the linear nature of the reativisic covariance
reation, the Lorentz transformation to the laboratory frame can be applied by operating on
every plane-wave spectra component through the parameter dteration rules. The PWLA
technique is formaly smpler but its solutions are gpproximated and sufficiently accurate
only in points which are far away from the trgectory of the target; on the other hand PWIE
furnishes exact solutions.

In this work we gpply the PWIE to the specific case of a Pefectly Electric Conducting
(PEC) wedge which uniformly trandates in vacuo, that has been previoudy trested by
other authors only by means of the PWLA [5]. In paticular, the PWIE of the scattered
field is based on the Fourier integra representation of the Non-Integer Cylindrical Waves
(NICW) [6,7]; in fact, the smple linear procedure of Lorentz-transforming one by one the
teems involved in the expandgon is not goplicable to the Sommefdd formula which is
commonly used in the literature for representing wedge diffraction [8], because it conssts
in an integration over a complex spectrd varidble, whose nonred vaues fumish fidd
terms to the integrd summation which (unlike plane-waves) do not individudly verify the



Hemholtz separability condition in vacuo, i.e. they ae not paticular solution of the
Maxwell equations and then they are not Lorentz covariant.
The andytica results have been used as a benchmark for testing two numerica techniques,
the Relativistic Physical Optics (ROP) and the Relativistic Moment Method (RMM), that
have been developed, on the ground of the FHM-PWIE approach, for studying diffraction
problems by moving objects with an arbitrary geometry [9].

[I-FORMULATION
We digtinguish between two inertid reference frames, the laboratory frame S and the co-
moving frame S¢ where the scattering PEC wedge WC appears at rest; the relaive velocity

is bcz, where c:]/‘/m,eO is the light speed in vacuo, see [3,7,9]. For an observer in
frame S the incdent EM fidd, that is assumed to be an ahitrarily polarized mono-
chromatic PW with angular frequency w, has the following expression:
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where E;, H; are the incident dectric and magnetic fields, a podtion r=[x, y, z] and time t,
respectively; i =++/- 1; superscript ‘Re means tha the red part of the entire right member
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H, =iJfe,/m, (IA<i ‘ Ei) are constant complex vectors determining the polarization.

As afirs gep of the FHM, by applying Lorentz transformation to Eqg. (1), we obtain the
expresson of the incident EM fiddd as observed in the co-moving frame S¢ a postion

ré=[x¢ y¢ z4=[x, y, g (zbct)] and timete=g (t-bc™2), (g = +41- b?):
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with PW parameters atered according to the following rules [3/4].
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As a second gep of the FHM, we solve the motionless diffraction problem in frame S¢ in
order to obtain a PW expansion of the scattered EM fidd [E$H ¢ :
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where R§=§+\/1- (@y){ (Rg)z, AT g (for x'>x¢ :rrgwird:. X]) is the wave unit

vector, and E$, H¢ are the PW Spectrd Amplitude Coefficients (PWSACs) , see sec. 11.1.

Findly, as a last step of the FHM, we agpply the S® S Lorentz transformations to Eq. (6)
and obtain the PW expansion of the scattered field in the laboratory frame (for x > x¢ ):
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with the PW parameters obtained by the following rules [3,4].
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I1-1 PWSACSEVALUATION

Analytical Solution — Firdly, the scattered EM fidd is expanded as a discrete
summeation of NICWs according to the Radial Transmission Representation [10];
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where ng are non-integer indexes and gendi ,hn(EH are vector congant coefficients depending

on the wedge geometry and on the incident field features [7,10]; secondly, each ny-order
NICW is expressed in terms of a Fourier integra expansion (see[6,7] for details):
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S0 that the exact expression of the PWSACsin Eq. (6) isobtained:
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Numerical Techniques — On the ground of the Equivdence Theorem (ET), the
PWSACs in Eg. (6) can be rdaed to the expresson of the totd EM fied

[E¢H G, .= [E® EGHE HY,  =Re{[EGH],, exp|- iwed} on the TWe see [11]:
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a) RMM: The totd EM fidd on W can be exactly evauated through the
following ET- based surface integra equation [11]:
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where G(rq:(4p Ir ¢)'1expgiw¢:'1|r ¢y Ag, fdare the outward unit normal vectors a
points r&r @ W, respectively; N¢ is the ‘nabla operator with respect to the S¢ space-
coordinates at point r¢. Eg. (15) has to be solved together with the PEC condition
A¢ EQrd =0, ré TWe). By numericaly solving on the ground of the Moment Method

[12], we can get an gpproximation of the tota EM fidd on W, and then, through Egs. (6)
and (14), a PW expanson of the scattered EM fidd vaid in the vacuum space, that are
asymptoticaly exact asfar as the discretization lattice is taken to the continuum limit [9].

b) ROP: On the other hand, the ROP assumes an aprioristic
goproximation of the totd EM fied on fW¢ in order to compute the PWACs comparing in
Eq. (6); in the case of point, for a PEC wedge, we let, see [9,13]:



A [E¢H(} i :r ¢ ‘optically illuminated portion' of W ¢ (16)
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re i [0, 0. ]r¢ :r ¢l optically shadowed portion' of fW¢

Il RESULTS

In Fg. 1 the exact andytical solution for the moving PEC is compared with results relevant
to the gpplication of the RMM and of the ROP. As one can see, for such critical geometry
(points on the edge of the wedge have nornrunique tangentid plane) the ROP, that inherits
dl the limitations of the usud motionless case, is capable to predict only the globa
bandwidth broadening and the postion of the principal in-band peaks, whereas the RMM
furnishes a more accurate determination of the whole spectra pattern (in this case a Point-
Matching implementation [12] for the RMM was used; the norm of the discretization
| attice was taken the same, mutatis mutandis, in ROP and RMM for best comparability).

3) Pa(W)/Pa (W) PaW)/Pa (W) | D)
Pm(V\O/PA (W)
. . . M Awrw . . . A Wiw
0.97 0.98 0.99 .01 1.02 1.03 0.97 0.98 0.99 .01 1.02 1.03

Fig.1 Results relevant to the  spectral amplitude of the Poynting vector
P(W) :%|A({Es (r't);M g AI{H J(r t)\l\}| vs. normalized frequency W/w (At{ ;W represent the t® W

Fourier transform). Continuous line in graphics @) and b): Analytical result [subscript ‘A’] for a indefinite
wedge: Pa(W)/Pa(w); dotted lines in graphics a) and b): results relevant to application to the case of a finite
wedge (height h=25, radius r =25/ , where | =2pc/w) of the RMM [subscript ‘M’], Bu(W)/Pa(w), and of the
ROP [subscript ‘P'], R-(W)/Pa(w), respectively. Geometric parameters (see [7]): wedge internal angle c¢=5°;
y =87.25° is the wedge orientation with respect to the relative velocity 0.02" c; the incident PW propagates
along the normal direction, g =270°, with circular polarization; observation point X =(x,y,z) = (o_g| ,o,o) .
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